Patents Examined by Lois L Zheng
  • Patent number: 11718888
    Abstract: A method is for producing a high strength coated steel sheet having an improved ductility and an improved formability, and a chemical composition containing: 0.13%?C?0.22%, 1.9%?Si?2.3%, 2.4%?Mn?3%, Al?0.5%, Ti?0.05%, Nb?0.05%, the remainder being Fe and unavoidable impurities. The sheet is annealed at temperature TA higher than Ac3 but less than 1000° C. for a time of more than 30 s, quenched by cooling to a quenching temperature QT between 200° C. and 280° C. in order to obtain a structure consisting of austenite and at least 50% of martensite, the austenite content being such that the final structure can contain between 3% and 15% of residual austenite and between 85% and 97% of the sum of martensite and bainite, without ferrite, heated up to a partitioning temperature PT between 430° C. and 490° C. and maintained at this temperature for a time Pt between 10 s and 100 s, hot dip coated and cooled to the room temperature.
    Type: Grant
    Filed: March 23, 2020
    Date of Patent: August 8, 2023
    Assignee: ARCELORMITTAL
    Inventors: Dongwei Fan, Hyun Jo Jun, Rashmi Mohanty, Pavan K. C. Venkatasurya
  • Patent number: 11713500
    Abstract: A process of heat treating an Al—Si—Cu—Mg—Fe—Zn—Mn—Sr-TMs alloy, where the TMs include Zr and V, includes heat treating the alloy to produce a microstructure having a matrix with Zr and V in solid solution after solidification. The solid solution Zr, in wt. %, is at least 0.16%, the solid solution V, in wt. %, is at least 0.20% after heat treatment, and Cu and Mg are dissolved into the matrix during the heat treatment and subsequently precipitated during the heat treatment. The composition of the alloy, in wt. %, includes Cu between 3.0-3.5%, Fe between 0-0.2%, Mg between 0.24-0.35%, Mn between 0-0.40%, Si between 6.5-8.0%, Sr between 0-0.025%, Ti between 0.05-0.2%, V between 0.20-0.35%, Zr between 0.2-0.4%, maximum 0.5% total of other alloying elements, and balance Al.
    Type: Grant
    Filed: July 30, 2020
    Date of Patent: August 1, 2023
    Assignee: Ford Global Technologies, LLC
    Inventors: Mei Li, Jacob Wesley Zindel, Larry Alan Godlewski, Bita Ghaffari, Yang Huo, Carlos Engler-Pinto, Wei-jen Lai
  • Patent number: 11692255
    Abstract: Described herein are 7xxx series aluminum alloys with unexpected properties and novel methods of producing such aluminum alloys. The aluminum alloys exhibit high strength and are highly formable. The alloys are produced by continuous casting and can be hot rolled to a final gauge and/or a final temper. The alloys can be used in automotive, transportation, industrial, and electronics applications, just to name a few.
    Type: Grant
    Filed: September 27, 2017
    Date of Patent: July 4, 2023
    Assignee: Novelis Inc.
    Inventors: Milan Felberbaum, Sazol Kumar Das, Duane E. Bendzinski, Rajeev G. Kamat, Tudor Piroteala, Rajasekhar Talla
  • Patent number: 11692272
    Abstract: Provided are coated metal, the metal having improved properties due to a novel coating, a coating-forming treatment solution for forming the novel coating, and a method for producing the coated metal that has the novel coating. The coated metal includes metal and a coating formed on the metal. The coating includes Si, P, and O, and at least one selected from the group consisting of Mg, Ca, Ba, Sr, Zn, Al, and Mn. The coating includes a compound having a NASICON-type crystal structure represented by the general formula MIMIV2(MVO4)3.
    Type: Grant
    Filed: February 8, 2022
    Date of Patent: July 4, 2023
    Assignee: JFE Steel Corporation
    Inventors: Takashi Terashima, Makoto Watanabe, Toshito Takamiya
  • Patent number: 11692258
    Abstract: Provided is a method for preparing a metal oxide or a metal hydroxide nano thin-film material by a molten salt method, which mainly comprises the following steps: heating a low-melting-point salt to a molten state, adding a substrate into the molten salt before or after melting for reaction; adding a metal source and continuing the reaction for a period of time; removing the substrate, cooling the substrate to a room temperature, cleaning and drying the substrate to obtain the metal oxide or metal hydroxide nano thin-film material; wherein, the mass ratio of the low-melting-point salt to the metal source is 100-1.5:1. The metal oxide and metal hydroxide nano-film materials with various nano-morphologies prepared by the method of the present application have morphologies that can be regulated and controlled by the types and proportions of the low-melting-point salts and metal sources.
    Type: Grant
    Filed: September 30, 2019
    Date of Patent: July 4, 2023
    Assignee: ZHEJIANG UNIVERSITY
    Inventors: Yijie Gu, Jinming Wu
  • Patent number: 11685983
    Abstract: A castable, moldable, or extrudable magnesium-based alloy that includes one or more insoluble additives. The insoluble additives can be used to enhance the mechanical properties of the structure, such as ductility and/or tensile strength. The final structure can be enhanced by heat treatment, as well as deformation processing such as extrusion, forging, or rolling, to further improve the strength of the final structure as compared to the non-enhanced structure. The magnesium-based composite has improved thermal and mechanical properties by the modification of grain boundary properties through the addition of insoluble nanoparticles to the magnesium alloys. The magnesium-based composite can have a thermal conductivity that is greater than 180 W/m-K, and/or ductility exceeding 15-20% elongation to failure.
    Type: Grant
    Filed: July 8, 2019
    Date of Patent: June 27, 2023
    Assignee: TERVES, LLC
    Inventors: Andrew J. Sherman, Nicholas Farkas
  • Patent number: 11674208
    Abstract: A castable, moldable, or extrudable magnesium-based alloy that includes one or more insoluble additives. The insoluble additives can be used to enhance the mechanical properties of the structure, such as ductility and/or tensile strength. The final structure can be enhanced by heat treatment, as well as deformation processing such as extrusion, forging, or rolling, to further improve the strength of the final structure as compared to the non-enhanced structure. The magnesium-based composite has improved thermal and mechanical properties by the modification of grain boundary properties through the addition of insoluble nanoparticles to the magnesium alloys. The magnesium-based composite can have a thermal conductivity that is greater than 180 W/m-K, and/or ductility exceeding 15-20% elongation to failure.
    Type: Grant
    Filed: March 23, 2020
    Date of Patent: June 13, 2023
    Assignee: Terves, LLC
    Inventors: Andrew J. Sherman, Nicholas Farkas
  • Patent number: 11674203
    Abstract: New 6xxx aluminum alloys having an improved combination of properties are disclosed. The new 6xxx aluminum alloy generally include from 0.30 to 0.53 wt. % Si, from 0.50 to 0.65 wt. % Mg wherein the ratio of wt. % Mg to wt. % Si is at least 1.0:1 (Mg:Si), from 0.05 to 0.24 wt. % Cu, from 0.05 to 0.14 wt. % Mn, from 0.05 to 0.25 wt. % Fe, up to 0.15 wt. % Ti, up to 0.15 wt. % Zn, up to 0.15 wt. % Zr, not greater than 0.04 wt. % V, and not greater than 0.04 wt. % Cr, the balance being aluminum and other elements.
    Type: Grant
    Filed: January 22, 2019
    Date of Patent: June 13, 2023
    Assignee: ARCONIC TECHNOLOGIES LLC
    Inventors: Timothy A. Hosch, Russell S. Long
  • Patent number: 11670512
    Abstract: A method is disclosed for delectively depositing a material on a substrate wherein the substrate has at least two different surfaces wherein one surface is passivated thereby allowing selective deposition on the non-passivated surface. In particular, disclosed is a method for preparing a surface of a substrate for selective film deposition, wherein the surface of the substrate comprises at least a first surface comprising SiO2 and an initial concentration of surface hydroxyl groups and a second surface comprising SiH, the method comprising the steps of: contacting the substrate with a wet chemical composition to obtain a treated substrate comprising an increased concentration of surface hydroxyl groups relative to the initial concentration of surface hydroxyl groups; and heating the treated substrate to a temperature of from about 200° C. to about 600° C.
    Type: Grant
    Filed: March 16, 2018
    Date of Patent: June 6, 2023
    Assignee: VERSUM MATERIALS US, LLC
    Inventor: Michael A. Todd
  • Patent number: 11643732
    Abstract: A trivalent-chromium chemical conversion coating from which substantially no hexavalent chromium is released. The trivalent-chromium chemical conversion coating is one formed on the surface of a zinc or zinc-alloy deposit. In a brine spray test, the chemical conversion coating has unsusceptibility to corrosion (time required for white-rust formation) of 96 hours or longer. The chemical conversion coating has a hexavalent-chromium concentration less than 0.01 ?g/cm2 in terms of metal atom amount. The amount of hexavalent chromium released after 30-day standing in a thermo-hygrostatic chamber at a temperature of 80° C. and a humidity of 95% (amount of hexavalent chromium released when the coating is immersed in 100° C. water for 10 minutes) is smaller than 0.05 ?g/cm2.
    Type: Grant
    Filed: April 26, 2017
    Date of Patent: May 9, 2023
    Assignee: Dipsol Chemicals Co., Ltd.
    Inventors: Manabu Inoue, Kimitaka Watanabe, Go Nagata, Motoi Nakatani, Keita Ishizu, Toshiki Inomata
  • Patent number: 11624121
    Abstract: Disclosed is a solution composition which may be used for a single-bath electrochemical passivation and a method using the same. The solution composition includes a metal cation, a metal-oxide anion; and an organic ligand, and optionally includes a non-metallic oxide anion or a polymer. The solution composition may prevent undesired precipitation of metal oxides before performing passivation. In addition, the method of passivation using the solution composition in a single-bath use is also provided.
    Type: Grant
    Filed: February 14, 2020
    Date of Patent: April 11, 2023
    Assignee: RAYTHEON TECHNOLOGIES CORPORATION
    Inventors: Weilong Zhang, Michael A. Kryzman
  • Patent number: 11613791
    Abstract: The invention relates to a method for coating a steel sheet or steel strip to which an aluminium-based coating is applied in a dip-coating process and the surface of the coating is freed of a naturally occurring aluminium oxide layer. In order to provide a low-cost method for coating steel sheets or steel strips that makes the steel sheets or steel strips outstandingly suitable for the production of components by means of press hardening and for the further processing thereof, it is proposed that transition metals or transition metal compounds are subsequently deposited on the freed surface of the coating to form a top layer. The invention also relates to a method for producing press-hardened components from the aforementioned steel sheets or steel strips with an aluminium-based coating.
    Type: Grant
    Filed: February 14, 2018
    Date of Patent: March 28, 2023
    Assignee: Salzgitter Flachstahl GmbH
    Inventors: Frank Beier, Kerstin Körner, Marc Debeaux
  • Patent number: 11596720
    Abstract: A method of incorporating silver and/or copper into a biomedical implant includes: providing an implant having an outer surface; depositing silver and/or copper onto the outer surface of the implant; diffusing the silver and/or copper into a subsurface zone adjacent the outer surface; and oxidizing or anodizing the implant after the diffusion step to form an oxidized or anodized layer that contains at least some amount of elemental silver, elemental copper or silver or copper ions or compounds.
    Type: Grant
    Filed: August 20, 2019
    Date of Patent: March 7, 2023
    Assignee: Smith & Nephew, Inc.
    Inventors: Vivek D. Pawar, John Rose, Carolyn Weaver
  • Patent number: 11584859
    Abstract: A crystalline titanium and magnesium compound having an X-ray diffraction pattern having interplanar spacing (d-spacing) values at about 5.94, 3.10, 2.97, 2.10, 1.98, 1.82, and 1.74±0.1 angstroms may be used in protective coatings for metal or metal alloy substrates. The coatings exhibit excellent corrosion resistances and provide corrosion protection equal to or better than typical non-chromate coatings.
    Type: Grant
    Filed: August 15, 2019
    Date of Patent: February 21, 2023
    Assignee: The Boeing Company
    Inventors: John J. Vajo, Jason Graetz, Alain A. Adjorlolo
  • Patent number: 11542607
    Abstract: A novel method of blackening surgical needles is disclosed. Surgical needles having outer surfaces are first placed into a first pretreatment bath having a novel composition. The needles are then placed into a second blackening bath having a novel composition for a sufficient period of time to effectively blacken the surfaces of the needles. The novel methods for blackening the surfaces of a stainless steel alloy surgical needle provide a chromium (VI)-free alternative to current needle manufacturing processes. Another unique feature of this novel method is its short processing time. The blackening processes of the present invention can be utilized for in-line treatment processes which can be easily incorporated into high speed needle manufacturing processes, such as strip mounted processes. In addition, the processes of the present invention are readily adaptable to batch processes. Also disclosed are novel systems for blackening surgical needles and novel blackening baths for surgical needles.
    Type: Grant
    Filed: June 11, 2019
    Date of Patent: January 3, 2023
    Assignee: Ethicon, Inc.
    Inventors: Duan Li Ou, Christophe Vailhe, Inas Alhamyery
  • Patent number: 11530473
    Abstract: Disclosed are high-strength, highly deformable aluminum alloys and methods of making and processing such alloys. More particularly, disclosed is a heat treatable aluminum alloy exhibiting improved mechanical strength and formability. The processing method includes casting, homogenizing, hot rolling, solutionizing, pre-aging and in some cases pre-straining. In some cases, the processing steps can further include cold rolling and/or heat treating.
    Type: Grant
    Filed: December 12, 2017
    Date of Patent: December 20, 2022
    Assignee: Novelis Inc.
    Inventors: Guillaume Florey, Corrado Bassi, Aude Despois, David Leyvraz
  • Patent number: 11519076
    Abstract: Described herein are pretreatment compositions, coated aluminum alloy products, and methods for coating the alloys. The pretreatment compositions include inorganic chemical corrosion inhibitors dispersed in a silane-based matrix and may further include clay particles. The inorganic chemical corrosion inhibitors include rare earth metals and salts thereof. The pretreatment compositions, when applied to the surface of an alloy, inhibit corrosion of the alloys. The pretreatment compositions can be used in automotive, electronics, industrial, transportation, and other applications.
    Type: Grant
    Filed: July 27, 2018
    Date of Patent: December 6, 2022
    Assignee: Novelis Inc.
    Inventors: Corrado Bassi, Michèle Edith Berner, Christoph Ernst Joseph Radermacher
  • Patent number: 11519072
    Abstract: A sol-gel method for producing an anti-corrosion coating consisting of at least one layer of an oxide on a metal substrate. A non-aqueous solution of a precursor of the oxide is prepared and deposited on one surface at least of the metal substrate in order to cover said surface at least partially with a film comprising the precursor of the oxide. Hydrolysis-condensation of the precursor of the oxide is carried out by exposing the film to a humid atmosphere in order to form an oxide network in the film. Then, a treatment for stabilizing the film on the surface of the substrate is carried out, followed by a heat treatment of the surface of the metal substrate in order to crystallize the network of oxide and form the anti-corrosion coating.
    Type: Grant
    Filed: December 20, 2017
    Date of Patent: December 6, 2022
    Assignees: ELECTRICITE DE FRANCE, SORBONNE UNIVERSITE, CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE—CNRS—, COLLEGE DE FRANCE
    Inventors: Adele Astorg, Xavier Crozes, Lionel Nicole, Clement Sanchez
  • Patent number: 11517649
    Abstract: Biodegradable magnesium alloy implantable medical devices are protected to delay onset of corrosion, and thus biodegradability, or to corrode more uniformly. The protection allows for extended effective use of the devices while maintaining biodegradability. Examples of protective coatings include conversion coatings that at least partially remove exposed second phases from a surface of the magnesium alloy and coatings that provide a barrier between water and the surface of the magnesium alloy.
    Type: Grant
    Filed: June 17, 2019
    Date of Patent: December 6, 2022
    Assignee: Medtronic Vascular, Inc.
    Inventors: Syamala Rani Pulugurtha, Jeffrey Allen, James Mitchell, Christopher Storment, Jill Mendelson
  • Patent number: 11492707
    Abstract: Provided herein is a method for specifically adjusting the electrical conductivity of a conversion coating, wherein a metallic surface or a conversion-coated metallic surface is treated with an aqueous composition which comprises at least one kind of metal ions selected from the group consisting of the ions of molybdenum, copper, silver, gold, palladium, tin, and antimony and/or at least one electrically conductive polymer selected from the group consisting of the polymer classes of the polyamines, polyanilines, polyimines, polythiophenes, and polypryrols.
    Type: Grant
    Filed: April 7, 2016
    Date of Patent: November 8, 2022
    Assignee: CHEMETALL GMBH
    Inventors: Olaf Dahlenburg, Frank Hollmann, Michael Droege, Thomas Kolberg, Lisa Schmeier