Patents Examined by Luke D. Ratcliffe
  • Patent number: 11914037
    Abstract: A light detection and ranging (Lidar) system includes a light transmission component driven by a phase-keyed burst pattern generator operable to apply a phase-coded key for activating the light source in a series of on/off pulses for the transmitted TX light. The on/off sequence is chosen such that the pattern's auto-correlation function has a maximized peak to side lobe ratio. The on/off pulses of the received RX light reflected from the object or scene is converted to a bitstream that is cross-correlated with the phase-coded key. A peak detector finds the peak of the cross-correlation function and generate a time-of-flight signal indicative of the time between the transmission of the TX light and the peak of the cross-correlation function.
    Type: Grant
    Filed: January 29, 2019
    Date of Patent: February 27, 2024
    Assignee: Robert Bosch GmbH
    Inventor: Sayyed Mahdi Kashmiri
  • Patent number: 11914074
    Abstract: An optoelectronic sensor for the detection of objects in a monitored region is provided that comprises at least one light transmitter for transmitting a plurality of light beams separate from one another starting from a respective transmission point, a common transmission optics for the transmitted light beams, at least one light receiver for generating a respective received signal from the remitted light beams reflected from the objects and incident at a respective reception point, a common reception optics for the remitted light beams and an evaluated unit for obtaining information on the objects from the received signals. In this connection the transmission points are arranged on a first circular line and/or the reception points are arranged on the second circular line.
    Type: Grant
    Filed: January 24, 2019
    Date of Patent: February 27, 2024
    Assignee: SICK AG
    Inventors: Hartmut Gimpel, Gottfried Hug, Klaus Clemens
  • Patent number: 11914042
    Abstract: A system shines a series of light stripes across an area. A target object passes through the area and light is reflected to the system from the light stripes as it passes through. Based on the timing of the received light from each of the light stripes, the system calculates the position and velocity of the target object.
    Type: Grant
    Filed: October 20, 2021
    Date of Patent: February 27, 2024
    Assignee: Vortant Technologies, LLC
    Inventor: Philip Raymond Schaefer
  • Patent number: 11906628
    Abstract: Apparatus for optical sensing includes an illumination assembly, which is configured to direct a first array of beams of optical radiation toward different, respective areas in a target scene while modulating the beams with respective carrier waves having a common carrier frequency and different respective phase angles, which vary across the first array in a predefined spatial pattern. A detection assembly includes a second array of sensing elements, which are configured to output respective signals in response to the optical radiation that is incident on the sensing elements during one or more detection intervals, which are synchronized with the carrier frequency, and objective optics, which are configured to form an image of the target scene on the second array. Processing circuitry processes the signals output by the sensing elements in order to generate a depth map of the target scene.
    Type: Grant
    Filed: July 26, 2020
    Date of Patent: February 20, 2024
    Assignee: APPLE INC.
    Inventors: Brian S. Medower, Bernhard Buettgen
  • Patent number: 11898875
    Abstract: An optical measurement system and method that utilizes a single camera in combination with a specially configured target object which significantly improves optical measuring accuracy with respect to the measurement of distance, height difference and position.
    Type: Grant
    Filed: February 19, 2021
    Date of Patent: February 13, 2024
    Assignee: Topcon Positioning Systems, Inc.
    Inventor: Leonid Valerianovich Edelman
  • Patent number: 11899110
    Abstract: A LiDAR system includes one or more light sources configured to emit a set of light pulses in a temporal sequence with randomized temporal spacings between adjacent light pulses, one or more detectors configured to receive a set of return light pulses, and a processor configured to: determine a time of flight for each return light pulse of the set of return light pulses; and obtain a point cloud based on the times of flight of the set of return light pulses. Each point corresponds to a respective return light pulse. The processor is further configured to, for each respective point of the set of points in the point cloud: analyze spatial and temporal relationships between the respective point and a set of neighboring points in the set of points; and evaluate a quality factor for the respective point based on the spatial and temporal relationships.
    Type: Grant
    Filed: September 10, 2021
    Date of Patent: February 13, 2024
    Assignee: Cepton Technologies, Inc.
    Inventors: Jon Day Allen, Dongyi Liao, Mark A. McCord
  • Patent number: 11892566
    Abstract: A multiplexed LiDAR system generates an image of an object based on the distance of various point measurements to the object. The multiplexed LiDAR utilizes at least two sets of light source emissions to a scanner to simultaneously form multiple scanning patterns that effectively increase the scanning speed, scanning area, or image pixel density of the LiDAR system.
    Type: Grant
    Filed: September 22, 2022
    Date of Patent: February 6, 2024
    Assignee: Optowaves, Inc.
    Inventors: Tsung-Han Tsai, Jie Jensen Hou, Hao Wu, Shanxing Su, Jiaqi Zhang
  • Patent number: 11892543
    Abstract: A system and method for combining multiple functions of a light detection and ranging (LIDAR) system includes receiving a second optical beam generated by the laser source or a second laser source, wherein the second optical beam is associated with a second local oscillator (LO); splitting the second optical beam into a third split optical beam and a fourth split optical beam; transmitting, to the optical device, the third split optical beam and the fourth split optical beam; receiving, from the optical device, a third reflected beam that is associated with the third split optical beam and a fourth reflected beam that is associated with the fourth split optical beam; and pairing the third reflected beam with the second LO signal and the fourth reflected beam with the second LO signal.
    Type: Grant
    Filed: March 9, 2021
    Date of Patent: February 6, 2024
    Assignee: AURORA INNOVATION, INC.
    Inventors: Zeb Barber, Stephen Crouch, Emil Kadlec
  • Patent number: 11885887
    Abstract: An imaging subsystem is disclosed, wherein the imaging subsystem is coherent and it generally includes an optical phased array (OPA), frequency modulation (FM) and/or amplitude modulation (AM). The imaging subsystem is operable with a Super System on Chip (SSoC) or a photonic neural learning processor (PNLP). The Super System on Chip (SSoC) includes memristors. The imaging subsystem is further operable with a camera (e.g., a metamaterial camera, wherein the metamaterial camera includes one or more metasurfaces). Furthermore, the imaging subsystem may be included with a vehicle system, wherein the vehicle system can recommend a service or an offer to a user/driver by anticipating any need of the user/driver.
    Type: Grant
    Filed: July 14, 2021
    Date of Patent: January 30, 2024
    Inventor: Mohammad A. Mazed
  • Patent number: 11885914
    Abstract: A light detection and ranging (LIDAR) system includes a transmitter configured to output a number of output pulses to a target object; a receiver configured to receive a plurality of input pulses corresponding to the number of output pulses; and a signal processor including a signal converter configured to convert the plurality of input pulses into discrete signals and an encoder configured to encode amplitude information of the plurality of input pulses converted into the discrete signals.
    Type: Grant
    Filed: July 8, 2020
    Date of Patent: January 30, 2024
    Assignee: HYUNDAI MOBIS CO., LTD.
    Inventor: Jae Won Choi
  • Patent number: 11879732
    Abstract: A method of measuring a structure includes acquiring azimuth and tilt readings at a first location and second location. Images of the structure are also acquired from the first and second location. The respective distances from the first and second locations to a first and second point on the structure are measured. A scale is established from two positions of the structure depicted in the first or second image of the structure. The distance between the first and second points on the structure is found using the established scale. This distance is used with the azimuth and tilt readings and measured distances from the first and second location to build an epipolar model of the structure. The structure may be a utility pole. Also disclosed are methods of assisting photogrammetric measurements and estimating the class of a utility pole, and methods of determining the compliance status of a utility pole.
    Type: Grant
    Filed: April 3, 2020
    Date of Patent: January 23, 2024
    Assignee: IKEGPS Group Limited
    Inventors: Jeremy James Gold, Leon Mathieu Lammers van Toorenburg
  • Patent number: 11874376
    Abstract: A light detection and ranging (LIDAR) sensor system for a vehicle includes a transmitter, a receiver, and a scanner. The transmitter is configured to output a transmit beam. The transmitter includes a first grating coupler. The receiver includes a plurality of second grating couplers spaced apart from the first grating coupler.
    Type: Grant
    Filed: August 18, 2022
    Date of Patent: January 16, 2024
    Assignee: AURORA OPERATIONS, INC.
    Inventors: Edward Joseph Angus, Zeb William Barber, Andrew Steil Michaels, Evan Rogers
  • Patent number: 11874089
    Abstract: A rangefinder includes a housing detachably mounted and fixed on a sighting telescope; a power supply, a control module, a laser ranging module, a visible laser indicator, a display module and an optical visibility adjustment system which are accommodated in the housing, an optical path of laser ranging module is coaxial with an optical path of visible laser indicator, the visible laser indicator is used for a position indication when a ranging and aiming position of the laser ranging module coincides with a center of a reticle of the sighting telescope, an image shown by the display module is adjusted by the optical visibility adjustment system to meet observation habits of different users and make a ranging data visible in an eyepiece field of the sighting telescope, the image displayed by display module shows ranging and related information of the laser ranging module.
    Type: Grant
    Filed: June 20, 2023
    Date of Patent: January 16, 2024
    Assignee: SHENZHEN RUIERXING ELECTRONIC CO., LTD.
    Inventors: Luxin Fu, Zhicheng Xing
  • Patent number: 11874374
    Abstract: The invention pertains to a system for characterizing surroundings of a vehicle, the system comprising: projection means (210) arranged for projecting a pattern of laser light towards said surroundings in a sequence of pulses; a detector (220) comprising a plurality of pixels, said detector (220) being configured for detecting light representing said pattern of laser light as reflected by said surroundings in synchronization with said sequence of pulses; and processing means (240) configured to calculate distances to objects (99) in said surroundings as a function of exposure values generated by said pixels in response to said detected light; wherein said detector (220) is further configured for detecting light forming a two-dimensional image of said surroundings at points in time that do not coincide with said sequence of pulses or at pixels that do not receive said light representing said pattern of laser light as reflected by said surroundings.
    Type: Grant
    Filed: January 2, 2018
    Date of Patent: January 16, 2024
    Assignee: Xenomatix NV
    Inventor: Filip Geuens
  • Patent number: 11874378
    Abstract: A coherent imaging system produces coherent flood illumination directed toward a remote object and local oscillator (LO) illumination derived based on a same master oscillator as the flood illumination. A Doppler sensor receives the LO illumination and a return of flood illumination reflected off the object. Doppler shift data from the Doppler sensor, corresponding to a longitudinal velocity of the object relative to the imaging system, is used to produce Doppler-shifted LO illumination received by a low bandwidth, large format focal plane array (FPA), together with the return illumination from the object. Interference between the Doppler-shifted LO illumination and the return illumination facilitates producing an image of the object with the low bandwidth FPA despite the longitudinal velocity. Pixel intensities from the FPA are integrated over a period approaching the maximum interference frequency. The Doppler sensor and FPA may concurrently process return for a high energy laser target spot.
    Type: Grant
    Filed: April 16, 2021
    Date of Patent: January 16, 2024
    Assignee: Raytheon Company
    Inventors: Joseph Marron, Maurice J. Halmos, Justin S. Grayer, David N. Sitter, Jr., Gamze Erten
  • Patent number: 11867809
    Abstract: A measurement apparatus includes a laser apparatus, a branching part that branches a frequency-modulated laser beam output by the laser apparatus into a reference light and a measurement light; a beat signal generation part that generates a beat signal by mixing a reflected light and the reference light, a conversion part that converts the beat signal into a digital signal at a first sampling rate and frequency-analyses it, an extraction part that extracts a signal component corresponding to a cavity frequency from the frequency-modulated laser beam, a digital filter that digitally filters the extracted signal component at a second sampling rate; and a calculation part that calculates a difference in a propagation distance between the reference light and the measurement light.
    Type: Grant
    Filed: July 6, 2020
    Date of Patent: January 9, 2024
    Assignee: Mitutoyo Corporation
    Inventors: Yoshimasa Suzuki, Shinichi Hara, Shinji Komatsuzaki, Ryusuke Kato, Hiroki Ujihara, Masayuki Nara, Tomotaka Takahashi
  • Patent number: 11867500
    Abstract: A method for computing a depth map of a scene in a structured light imaging system including a time-of-flight (TOF) sensor and a projector is provided that includes capturing a plurality of high frequency phase-shifted structured light images of the scene using a camera in the structured light imaging system, generating, concurrently with the capturing of the plurality of high frequency phase-shifted structured light images, a time-of-flight (TOF) depth image of the scene using the TOF sensor, and computing the depth map from the plurality of high frequency phase-shifted structured light images wherein the TOF depth image is used for phase unwrapping.
    Type: Grant
    Filed: July 6, 2020
    Date of Patent: January 9, 2024
    Assignee: Texas Instruments Incorporated
    Inventors: Sanjeev Jagannatha Koppal, Vikram Vijayanbabu Appia
  • Patent number: 11860304
    Abstract: A system and method for processing a 3D point cloud to generate a segmented point cloud in real time are disclosed, the method includes: receiving a sparse 3D point cloud captured by a detection and ranging sensor mounted to a vehicle, the 3D point cloud comprising a plurality of data points, each data point in the 3D point cloud having a set of coordinates in a coordinate system of the detection and ranging sensor; generating, from the 3D point cloud, a range map comprising a plurality of elements, each of the plurality of data points of the 3D point cloud occupying a respective element of the plurality of elements; labelling the data point in each respective element of the range map as one of a pole-like data point or a vertical-plane-like data point; and generating the segmented point cloud including one or more of the labeled data points.
    Type: Grant
    Filed: October 1, 2020
    Date of Patent: January 2, 2024
    Assignee: HUAWEI TECHNOLOGIES CO., LTD.
    Inventors: Yuan Ren, Bingbing Liu, Ran Cheng
  • Patent number: 11860308
    Abstract: An integrated chip packaging for a LIDAR sensor mounted to a vehicle includes a laser assembly configured to output a beam, an optical amplifier array chip configured to amplify a beam, and a transceiver chip coupled to the laser assembly and the optical amplifier array chip. The transceiver chip may be configured to emit the beam with reference to a first surface of the transceiver chip through an optical window and receive a reflected beam from a target through the optical window. The integrated chip packaging for the LIDAR sensor defines the configuration of optical components for providing a path for the optical signal to travel in and out of the LIDAR sensor and dissipating the heat generated by the optical components for improved performance.
    Type: Grant
    Filed: November 16, 2022
    Date of Patent: January 2, 2024
    Assignee: Aurora Operations, Inc.
    Inventors: Colin Delaney, James Ferrara, Stefan Heinemann, Amir Hosseini, Pruthvi Jujjavarapu, Yongxuan Liang, Parth Panchal, Zhizhong Tang
  • Patent number: 11860276
    Abstract: A three-dimensional (3D) coordinate measurement device and method of operating combines tracker and scanner functionality. The method includes selecting an operating mode on the coordinate measurement device. A first light is emitted from the coordinate measurement device. At least two angles associated with the emitting of the first light are measured. A second light is received with an optical detector, wherein the second light is a reflection of the first light off of the retroreflector or the surface. A distance is determined based at least in part on the selected mode, the emitting of the first light, and the receiving of the second light. Three dimensional coordinates of at least one point in the environment are determined based at least in part on the measuring of the at least two angles and the determination of the distance.
    Type: Grant
    Filed: July 22, 2021
    Date of Patent: January 2, 2024
    Assignee: FARO Technologies, Inc.
    Inventors: Kenneth Steffey, Robert E. Bridges, David H. Parker