Patents Examined by Luther Behringer
  • Patent number: 11224395
    Abstract: A medical imaging system with a screen, an X-ray imaging device having an X-ray interface and an intravascular data acquisition device having an intravascular interface provide enhanced X-ray images. For this purpose, the medical imaging system is adapted for overlaying an information set provided at the intravascular interface onto an X-ray image provided at the X-ray interface on user request for generating an enhanced X-ray image and for displaying the enhanced X-ray image on the screen.
    Type: Grant
    Filed: September 27, 2013
    Date of Patent: January 18, 2022
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Melike Bozkaya, Cherif Sahyoun, Fransciscus Joannes Leonardus Everaerts, Bram Antonius Philomena Van Rens
  • Patent number: 11224484
    Abstract: Surgical systems for use in surgical procedures utilizing robotic devices. The surgical system having one or more components for housing a sensor or one or more tools for anchor or sensor delivery. The surgical system may include a surgical sensor anchor and/or a surgical sensor anchor delivery tool. A method of performing a robotically assisted surgical procedure, comprising using a surgical sensor anchor during a surgical procedure which utilizes a robot to track movement of at least one portion of a body structure undergoing a surgical procedure or to track movement of a body structure near a surgical site.
    Type: Grant
    Filed: January 11, 2019
    Date of Patent: January 18, 2022
    Assignee: Globus Medical Inc.
    Inventors: Peter L. Bono, James D. Lark, John S. Scales, Thomas J. Lord
  • Patent number: 11219428
    Abstract: A wearable electronic device configured to be worn by a user while performing an invasive procedure for enhancing visualization of desired anatomical structures is provided. The wearable electronic device includes: a housing; at least one imaging sensor associated with the housing; and a visual display integrally formed with or associated with the housing. The device is configured to acquire an image of an invasive access site of a patient with the at least one imaging sensor, process the image to determine a location of a desired anatomical structure, and display a virtual trace of the location to the user via the visual display.
    Type: Grant
    Filed: January 29, 2015
    Date of Patent: January 11, 2022
    Assignee: Becton, Dickinson and Company
    Inventors: Jonathan Karl Burkholz, Jeff O'Bryan, Siddarth K. Shevgoor, Yiping Ma
  • Patent number: 11197723
    Abstract: A system and method configured to position medical instruments. The system and method includes an orientation localizer including at least one fiducial marker and having a localized plane, wherein the orientation localizer is mountable at a skin entry point on a patient, a computer configured to receive at least one medical image on the localized plane, register a position and orientation of the orientation localizer with the at least one medical image using the at least one fiducial marker, determine at least one cross sectional image based on the at least one medical image on the localized plane, and determine an insertion plane perpendicular to the localized plane, and an image display connected to the computer, wherein the image display displays the at least one cross sectional image on the localized plane and/or on the insertion plane.
    Type: Grant
    Filed: October 9, 2017
    Date of Patent: December 14, 2021
    Assignee: Canon U.S.A., Inc.
    Inventor: Takahisa Kato
  • Patent number: 11197651
    Abstract: Apparatus and methods are described for use with a tool that is inserted into a portion of a body of a subject that undergoes cyclic motion. The apparatus and methods include using an imaging device, acquiring a plurality of images of the tool inside the portion of the body, at respective phases of the cyclic motion. Using at least one computer processor, an extent of movement of the tool with respect to the portion of the body that is due to the cyclic motion of the portion of the body is determined. In response thereto, an output is generated that is indicative of the determined extent of the movement of the tool with respect to the portion of the body. Other applications are also described.
    Type: Grant
    Filed: June 18, 2015
    Date of Patent: December 14, 2021
    Assignee: SYNC-RX, LTD.
    Inventors: Ran Cohen, Zohar Barzelay, Eldad Klaiman, Alexander Steinberg
  • Patent number: 11193991
    Abstract: The following relates generally to ensuring patient safety while operating a Magnetic Resonance Imaging (MRI) machine. Many MRI systems operate using: fiber optic cables to carry signals, electrically conductive cables to carry other signals, and radio frequency (RF) coils to create an electromagnetic field. Typically, the electrically conductive cables and RF coils do not interact in a way that causes harm to a patient. However, certain shapes and/or lengths of cables exhibit the phenomenon of “resonance” that increases their propensity to concentrate RF currents induced by the RF coils. This may increase the temperature of the cable or other component in the MRI system leading to patient harm. The methods disclosed herein provide a solution to this by sensing a shape of the fiber optic cable and determining if the fiber optic cable will exhibit resonance. If it is determined that resonance may potentially occur, an alarm may be generated or a radio frequency amplifier may be interlocked.
    Type: Grant
    Filed: November 30, 2015
    Date of Patent: December 7, 2021
    Assignee: Koninklijke Philips N.V.
    Inventors: Francis Patrick O'Neill, Ronald Paul Consilgio
  • Patent number: 11172991
    Abstract: A method and system for determining a location of a treatment element relative to an anatomical feature and for estimating contact between the treatment element and the anatomical feature in the context of a navigation system. The system may include a medical device including at least one treatment element and at least one navigation electrode and a navigation system in communication with the one or more navigation electrodes, the navigation system including a processing unit. The processing unit may be programmed to determine a plurality of points that define a surface geometry of the at least one treatment element, calculate a distance between each of the points and a closest point on the anatomical feature, and estimate the likelihood of contact between the points.
    Type: Grant
    Filed: September 8, 2016
    Date of Patent: November 16, 2021
    Assignee: Medtronic, Inc.
    Inventor: Scott A. Hareland
  • Patent number: 11172911
    Abstract: Systems and methods for improving the quality of ultrasound images made up of a combination of multiple sub-images include giving more weight to sub-image information that is more likely to improve a combined image quality. Weighting factor information may be determined from the geometry (e.g., angle or path length) of a location of one or more specific transducer elements relative to a specific point within a region of interest or a region of an image. In some embodiments, any given pixel (or other discrete region of an image) may be formed by combining received echo data in a manner that gives more weight to data that is likely to improve image quality, and/or discounting or ignoring data that is likely to detract from image quality (e.g., by introducing noise or by increasing point spread).
    Type: Grant
    Filed: April 24, 2017
    Date of Patent: November 16, 2021
    Assignee: MAUI IMAGING, INC.
    Inventors: Josef R. Call, Donald F. Specht, Kenneth D. Brewer
  • Patent number: 11166766
    Abstract: A C-arm, or a mobile intensifier device, is one example of a medical imaging device that is based on X-ray technology. Because a C-arm device can display high-resolution X-ray images in real time, a physician can monitor progress at any time during an operation, and thus can take appropriate actions based on the displayed images. Monitoring the images, however, is often challenging during certain procedures, for instance during procedures in which attention must be paid to the patient's anatomy as well as a medical imaging device display. In an example, a surgical instrument assembly includes a processor, a surgical instrument configured to operate on an anatomical structure, and a display coupled to the processor and attached to the surgical instrument. The display can be configured to display visual information comprising X-ray images generated by a medical imaging device.
    Type: Grant
    Filed: September 21, 2017
    Date of Patent: November 9, 2021
    Assignee: DePuy Synthes Products, Inc.
    Inventors: Mario Mata, Glen Pierson, George Mikhail, Scott Larsen
  • Patent number: 11154279
    Abstract: Circuitry for ultrasound devices is described. A multi-level pulser is described, which can support time-domain and spatial apodization. The multi-level pulser may be controlled through a software-defined waveform generator. In response to the execution of a computer code, the waveform generator may access master segments from a memory, and generate a stream of packets directed to pulsing circuits. The stream of packets may be serialized. A plurality of decoding circuits may modulate the streams of packets to obtain spatial apodization.
    Type: Grant
    Filed: March 31, 2016
    Date of Patent: October 26, 2021
    Assignee: BFLY Operations, Inc.
    Inventors: Liewei Bao, Kailiang Chen, Tyler S. Ralston, Nevada J. Sanchez
  • Patent number: 11141211
    Abstract: A surgical instrument for bonding body tissue includes an instrument shank or shaft, a first tool element, a second tool element axially movable relative to the first tool element, and an annular sleeve-like cutting element. The second tool element includes a plurality of tool element members that are radially deflectable. The first and second tool elements are each equipped with at least one electrode. The second tool element includes a biasing member that biases the tool element members in a radially inward direction. A stop member is operable in a first position to hold the tool element members against the biasing force of the biasing member in which the tool element members assume a maximum outer diameter. The stop member is further operable in a second position to release the tool element members such that the tool element members can deflect radially inwardly and cut body tissue.
    Type: Grant
    Filed: October 16, 2017
    Date of Patent: October 12, 2021
    Assignee: AESCULAP AG
    Inventors: Dieter Weisshaupt, Christoph Rothweiler
  • Patent number: 11123040
    Abstract: Methods and apparatus for treating a patient. The method includes acquiring a plurality of radio frequency (RF) signals with an ultrasound transducer, each RF signal representing one or more return echoes from a scan line of a pulse-mode echo ultrasound scan. A position of the ultrasound transducer corresponding to each of the acquired RF signals is determined, and a plurality of contour lines generated from the plurality of RF signals. The method estimates a 3-D shape and position of an anatomical feature, such as a joint of patient based on the generated contour lines and corresponding ultrasound transducer positions. An apparatus, or computer includes a processor and a memory with instructions that, when executed by the processor, perform the aforementioned method.
    Type: Grant
    Filed: June 19, 2017
    Date of Patent: September 21, 2021
    Assignee: JointVue, LLC
    Inventors: Mohamed R. Mahfouz, Ray C. Wasielewski
  • Patent number: 11122988
    Abstract: A technology of improving image quality of a calculation image or parameter estimation accuracy even in a case where a method of simultaneously generating calculation images of a plurality of parameters is used is provided. Thus, by utilization of a reconstructed image in an optimal resolution of each parameter to be estimated, a value of the parameter is estimated and a calculation image that is a distribution of the value of the parameter is acquired. A reconstructed image in an optimal resolution is acquired by adjustment of a resolution of a reconstructed image acquired in an optimal resolution of an estimation parameter with the highest optimal resolution among parameters to be estimated in scanning. Alternatively, in scanning, only a reconstructed image used for calculation of a predetermined parameter to be estimated is acquired in an optimal resolution of the parameter to be estimated.
    Type: Grant
    Filed: August 6, 2015
    Date of Patent: September 21, 2021
    Assignee: HITACHI, LTD.
    Inventors: Yo Taniguchi, Suguru Yokosawa, Hisaaki Ochi, Toru Shirai, Shinji Kurokawa
  • Patent number: 11119565
    Abstract: In one embodiment, a method may include outputting one or more sensor signals from an electronic device into a portion of a user's body, and detecting one or more deflected signals from the one or more sensor signals. The method may include detecting a bone structure of the user's body based on the one or more deflected signals. Then, the method may include determining a user measurement based on the one or more deflected signals, the health measurement being adjusted by the detected bone structure.
    Type: Grant
    Filed: January 15, 2016
    Date of Patent: September 14, 2021
    Assignee: SAMSUNG ELECTRONICS COMPANY, LTD.
    Inventors: Santiago Ortega Avila, Sajid Sadi, Bogdana Rakova
  • Patent number: 11090029
    Abstract: A non-imaging diagnostic ultrasound system for carotid artery diagnosis has a two dimensional array probe (10) with a low element count and relatively large element size which can cover an area of the carotid artery at its bifurcation. The elements are operated independently with no phasing, and detect Doppler flow spatially beneath each element. The system produces maps of carotid blood flow in two or three dimensions and can assemble an extended view of the flow by matching segments of the carotid flow as the probe is moved over the vessel. Once the carotid artery has been localized, the degree of stenosis is assessed by automated measurements of peak systolic velocity and blood flow turbulence.
    Type: Grant
    Filed: July 10, 2014
    Date of Patent: August 17, 2021
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Rajendra Singh Sisodia, Shriram Sethuraman, John Petruzzello, Ajay Anand, Shiwei Zhou, Ramon Quido Erkamp, Nagaraju Bussa, Vikram Basawaraj Patil Okaly, Sushanth Govinahalli Sathyanarayana, Krishnamoorthy Palanisamy
  • Patent number: 11079452
    Abstract: Some aspects of the present disclosure relate to systems and methods for magnetic resonance thermometry. In one embodiment, a preliminary balanced steady state free precession (bSSFP) magnetic resonance imaging pulse sequence is applied to an area of interest of a subject. Based on bSSFP image phases, a relationship between frequency and image phase associated with the area of interest can be determined and a bSSFP magnetic resonance imaging pulse sequence applied for temperature change measurement during and/or after focused energy is applied to the subject. Based on image phase change associated with temperature change and using the determined relationship between frequency and image phase, a change in the resonance frequency associated with the target area due to the application of the focused energy can be determined, and the temperature change can be determined based on the determined change in the resonance frequency.
    Type: Grant
    Filed: October 9, 2015
    Date of Patent: August 3, 2021
    Assignee: University of Virginia Patent Foundation
    Inventors: Grady Wilson Miller, Yuan Zheng
  • Patent number: 11064904
    Abstract: The present invention provides a MEMS sensor guidance system mounted on a surgical instrument and uses the MEMS sensor to determine Inertial Measurement Units to track rotation and acceleration in all three spatial directions. Further the invention provides a method of surgery in which a reference axis, a loci, and a depth are defined and the instrument including the sensor cluster of the invention is placed in relation to the y-axis and x-axis and following the working end is aligned and the orientation and depth data display is observed to aid in maintaining the desired instrument.
    Type: Grant
    Filed: February 28, 2017
    Date of Patent: July 20, 2021
    Assignee: EXTREMITY DEVELOPMENT COMPANY, LLC
    Inventors: David B. Kay, Ian P. Kay, Dustin Ducharme
  • Patent number: 11064975
    Abstract: Disclosed is an ultrasonic probe in which a supporting member is provided with a buffer unit to mitigate an outside impact. The ultrasonic probe includes a transducer rotatably provided, a shaft having the transducer mounted thereto, and a supporting member rotatably supporting the shaft, wherein the supporting member is provided with a buffer unit to mitigate an outside impact.
    Type: Grant
    Filed: September 8, 2016
    Date of Patent: July 20, 2021
    Assignee: SAMSUNG MEDISON CO., LTD.
    Inventors: In Seong Song, Won-Soon Hwang
  • Patent number: 11058357
    Abstract: An acoustic wave apparatus is used, the apparatus comprising: a supporting member supporting an examinee and having insertion opening; a subject holding member holding the subject; a transducer array including transducers and being distant from the subject holding member; a load acquiring unit acquiring a load value applied between the supporting member and the subject holding member based on an amount of deformation of the subject holding member; a memory unit storing a first load reference value determined based on the amount of deformation of the subject holding member and an area applied with the load when the subject holding member and the transducer array come into contact with each other; a comparing and determining; and an interlock controlling unit.
    Type: Grant
    Filed: June 21, 2017
    Date of Patent: July 13, 2021
    Assignee: CANON KABUSHIKI KAISHA
    Inventor: Shinji Ohishi
  • Patent number: 11045249
    Abstract: An electrode is disclosed for use in a system for heating biological tissue via RF energy. The electrode comprises a plurality of electrically conductive pins projecting from, and in electrical contact with, an electrically conductive common base. The base is connectible to a source of RF energy and the spaced ends of the pins remote from the base have contact regions for introducing RF energy from the source into the biological tissue. Each contact region is sufficiently small to achieve uniform dielectric heating in the biological tissue beneath the contact region at the frequency of the applied RF energy.
    Type: Grant
    Filed: July 30, 2014
    Date of Patent: June 29, 2021
    Inventors: Alexander Britva, Alexander Dverin, Ziv Karni