Patents Examined by Luther G Behringer
  • Patent number: 7809433
    Abstract: This invention provides methods and systems for removing or limiting interference and artifacts often found in EEG signals and/or EOG signals and/or other physiological signals, and produces output signals that can be of greater use for analytic or diagnostic purposes, such as sleep studies. Interference and artifacts are removed by applying a plurality of filtering methods targeted to the particular time-frequency characteristics of the anticipated interference.
    Type: Grant
    Filed: August 9, 2005
    Date of Patent: October 5, 2010
    Assignee: adidas AG
    Inventor: Barry Keenan
  • Patent number: 7805199
    Abstract: An apparatus and method for adjusting the performance of an implanted device based on data including contextual information. Contextual information, including operational and performance data concerning the implanted device as well as the patient with the implanted device, is stored by a portable electronic device. In one embodiment, the portable electronic device is adapted for battery operation and includes a personal digital assistant (PDA). The portable electronic device is adapted for use as an interface to conduct wireless communications with the implanted device. In one embodiment, the portable electronic device interfaces with a clinical programmer for use by a physician.
    Type: Grant
    Filed: May 1, 2006
    Date of Patent: September 28, 2010
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Bruce H. KenKnight, Eric G. Lovett, Robert J. Sweeney, Scott T. Mazar, Yatheendhar Manicka
  • Patent number: 7792584
    Abstract: A system and method for characterizing the atrial wall of the heart is provided. The characterization of the atrial wall can be used for a variety of diagnostic and therapeutic purposes. For example, it can be used to detect precursors to various types of hear disease, such as atrial fibrillation. In one embodiment, the system and method is used to determine a likelihood of fibrosis in the atrial wall. Furthermore, the system and method can detect changes in atrial wall fibrosis that can indicate a continuing degradation in the atrial wall health and an increasing likelihood of atrial fibrillation. In another embodiment, the system and method is used to determine if electrical instability exists in the atrial wall.
    Type: Grant
    Filed: April 25, 2006
    Date of Patent: September 7, 2010
    Assignee: Medtronic, Inc.
    Inventor: Geeske Van Oort
  • Patent number: 7774057
    Abstract: A gene regulatory system detects ischemia events and is capable of delivering a biologic therapy in response to the detection of an ischemic event or the reception of a command. The biologic therapy protects the heart from ischemic damage by regulating the expression of an exogenously introduced gene product. In one embodiment, the gene regulatory system includes an implantable system that emits at least one gene regulatory signal in response to the detection of the ischemic event or the reception of the command. The gene regulatory signal directly or indirectly regulates gene expression of the gene product.
    Type: Grant
    Filed: September 6, 2005
    Date of Patent: August 10, 2010
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Joseph M. Pastore, Jeffrey Ross, Tamara Colette Baynham, Rodney W. Salo, Andrew P. Kramer, Julio C. Spinelli
  • Patent number: 7774067
    Abstract: Techniques for automatically generating neurostimulation therapy program groups are disclosed. The techniques may include receiving rating information and information describing actual therapy effects for a plurality of tested programs, and receiving target therapy data describing target therapy effects. The techniques may include automatically generating plurality of program groups based on the rating information and a comparison of actual effects to the target therapy effects. Actual effects and target therapy effects may be, for example, actual paresthesia areas and target paresthesia areas. The techniques may also include determining whether a sufficient number of programs have been tested to generate a desired number of programs groups and, if a sufficient number have not been tested, automatically generating additional programs based on the tested programs, and automatically generating program groups from the tested and automatically generated programs.
    Type: Grant
    Filed: April 12, 2006
    Date of Patent: August 10, 2010
    Assignee: Medtronic, Inc.
    Inventors: Jeffrey T. Keacher, Steven M. Goetz, Andrew H. Houchins, Theodore J. Stone, Donald R. Johnson, Shyam Gokaldas
  • Patent number: 7769463
    Abstract: A therapeutic electrostimulation apparatus and method operates to supply electrostimulation signals to three channels. The basic electrostimulation signal for each of the channels is the same; and this signal is applied to a transcranial electrostimulation set of output electrodes. A second channel provided with the same signal is further operated to modulate the signal with a dual frequency signal pattern for the application of the second channel signal to a second set of electrodes, typically applied to the body near the spinal area. A third channel supplied with the basic electrostimulation signal modulates the electrostimulation signal during a portion of a treatment session with a diapason of frequencies varying randomly, and the output of this channel is applied to a set of electrodes at a local area for therapeutic treatment.
    Type: Grant
    Filed: June 19, 2007
    Date of Patent: August 3, 2010
    Assignee: Kalaco Scientific, Inc.
    Inventor: Yakov Katsnelson
  • Patent number: 7766814
    Abstract: The present invention provides a device and method of treating a vessel in a human or animal body.
    Type: Grant
    Filed: March 2, 2005
    Date of Patent: August 3, 2010
    Inventor: Peter William Walsh
  • Patent number: 7769452
    Abstract: A method of detecting a cardiac event in a medical device that includes sensing cardiac signals from a plurality of electrodes forming a first sensing vector and a second sensing vector, determining whether the first sensing vector and the second sensing vector is corrupted by noise, and determining, in response to one of the first sensing vector and the second sensing vector being corrupted by noise, whether the other of the first sensing vector and the second sensing vector is one of a first cardiac event and a second cardiac event different from the first cardiac event.
    Type: Grant
    Filed: April 28, 2006
    Date of Patent: August 3, 2010
    Assignee: Medtronic, Inc.
    Inventors: Raja N. Ghanem, Robert W. Stadler, Xusheng Zhang, Karen J. Kleckner, Paul G. Krause
  • Patent number: 7765003
    Abstract: A method of controlling the operation of a pulsatile heart assist device (14) in a patient (10). The method consisting of utilising sounds produced by the heart (12) to control the operation of the heart assist device (14).
    Type: Grant
    Filed: October 28, 2004
    Date of Patent: July 27, 2010
    Assignee: Sunshine Heart Pty Ltd
    Inventors: William Suttle Peters, Rodney Gordon Parkin
  • Patent number: 7764990
    Abstract: A method for measuring exercise level during exercise and for measuring fatigue, in which method electrical signals produced by active muscles are measured with a measuring device and feedback is given from an exercise with a perceivable signal from a feedback device. A device for measuring exercise level and fatigue during exercise, which device includes sensors for measuring electrical signals from active muscles and a feedback device for giving feedback. A momentary exercise level and the level of fatigue of a person are measured or estimated by measuring besides electrical signals received from muscles also other quantities describing exercise and from measuring results one or several indexes are calculated by means of which exercises carried out at different times and under different circumstances are comparable with each other.
    Type: Grant
    Filed: June 30, 2005
    Date of Patent: July 27, 2010
    Assignees: Suunto Oy, Mega Elekroniikka Oy
    Inventors: Mikko Martikka, Veikko Koivumaa, Pekka Tolvanen
  • Patent number: 7761150
    Abstract: A method of detecting a cardiac event in a medical device that includes determining a first characteristic in response to cardiac signals sensed along a first sensing vector over a predetermined sensing window and in response to cardiac signals sensed along a second sensing vector over the predetermined sensing window, determining a second characteristic in response to cardiac signals sensed along the first sensing vector over the predetermined sensing window and in response to cardiac signals sensed along the second sensing vector over the predetermined sensing window, and determining a third characteristic in response to cardiac signals sensed along the first sensing vector over the predetermined sensing window and in response to cardiac signals sensed along the second sensing vector over the predetermined sensing window.
    Type: Grant
    Filed: April 28, 2006
    Date of Patent: July 20, 2010
    Assignee: Medtronic, Inc.
    Inventors: Raja N. Ghanem, Robert W. Stadler, Xusheng Zhang
  • Patent number: 7761142
    Abstract: A method of detecting a cardiac event in a medical device that includes sensing cardiac signals from a plurality of electrodes forming a first sensing vector and a second sensing vector, determining inflections of the sensed cardiac signals, generating a pulse amplitude threshold in response to the determined inflections, and determining whether the inflections are indicative of noise in response to the determined inflections and the generated pulse amplitude threshold.
    Type: Grant
    Filed: April 28, 2006
    Date of Patent: July 20, 2010
    Assignee: Medtronic, Inc.
    Inventors: Raja N. Ghanem, Robert W. Stadler, Xusheng Zhang
  • Patent number: 7747327
    Abstract: A device for attaching at least three electrodes to a subject for stimulating abdominal muscles of the subject, comprising an attachment mechanism for extending around the torso of the subject and a main locating element provided on the attachment mechanism for locating a central electrode of the at least three electrodes adjacent the umbilicus of the subject. Two secondary locating elements are also provided on the attachment mechanism disposed on respective opposite sides of the main locating element for locating two corresponding side electrodes of the at least three electrodes spaced apart from the central electrode. Application of at least one pulsed signal to the subject through the respective central and side electrodes stimulates the abdominal muscles of the subject.
    Type: Grant
    Filed: May 12, 2006
    Date of Patent: June 29, 2010
    Assignee: BMR Research & Development Limited
    Inventors: Michael Conor Minogue, Michael Louis Crowe
  • Patent number: 7738965
    Abstract: A holster that may be donned in a first configuration for charging a pectorally implanted medical device on the patient's right side, a second configuration for charging a pectorally implanted medical device on the patient's left side, or a third configuration for use as a waist belt for charging a pectorally implanted medical device on either side of the patient.
    Type: Grant
    Filed: April 28, 2006
    Date of Patent: June 15, 2010
    Assignee: Medtronic, Inc.
    Inventors: William C. Phillips, Charles R. Lewis, Jr.
  • Patent number: 7738962
    Abstract: The invention is a method of automatically adjusting an electrode array to the neural characteristics of an individual patient. The perceptual response to electrical neural stimulation varies from patient to patient and The response to electrical neural stimulation varies from patient to patient and the relationship between current and perceived brightness is often non-linear. It is necessary to determine this relationship to fit the prosthesis settings for each patient. It is advantageous to map the perceptual responses to stimuli. The method of mapping of the present invention is to provide a plurality of stimuli that vary in current, voltage, pulse duration, frequency, or some other dimension; measuring and recording the response to those stimuli; deriving a formula or equation describing the map from the individual points; storing the formula; and using that formula to map future stimulation.
    Type: Grant
    Filed: February 16, 2006
    Date of Patent: June 15, 2010
    Assignee: Second Sight Medical Products, Inc.
    Inventors: Robert Jay Greenberg, Ione Fine, Arup Roy, Matthew J. McMahon
  • Patent number: 7734333
    Abstract: A method of detecting a cardiac event in a medical device that includes sensing a cardiac signal from a plurality of electrodes, determining amplitudes of the sensed cardiac signal during a predetermined sensing window, determining a noise to signal ratio corresponding to the determined amplitudes, and determining the sensed cardiac signal during the predetermined sensing window is corrupted by noise in response to the determined noise to signal ratio being greater than a noise to signal ratio threshold.
    Type: Grant
    Filed: April 28, 2006
    Date of Patent: June 8, 2010
    Assignee: Medtronic, Inc.
    Inventors: Raja N. Ghanem, Robert W. Stadler, Xusheng Zhang
  • Patent number: 7734336
    Abstract: A method of detecting a cardiac event in a medical device that includes sensing cardiac signals from a plurality of electrodes forming a first sensing vector and a second sensing vector, determining inflections of the sensed cardiac signals, generating a pulse amplitude threshold in response to the determined inflections, determining whether the sensed cardiac signals are corrupted by noise in response to the determined inflections and the generated pulse amplitude threshold, and determining, in response to the sensed cardiac signals being corrupted by noise, whether the sensed cardiac signals are both corrupted by noise and shockable.
    Type: Grant
    Filed: April 28, 2006
    Date of Patent: June 8, 2010
    Assignee: Medtronic, Inc.
    Inventors: Raja N. Ghanem, Robert W. Stadler, Xusheng Zhang
  • Patent number: 7729770
    Abstract: An implantable medical device is provided for isolating an elongated medical lead from internal device circuitry in the presence of a gradient magnetic or electrical field. The device includes an isolation circuit adapted to operatively connect an internal circuit to the medical lead in a first operative state and to electrically isolate the medical lead from the internal circuit in a second operative state.
    Type: Grant
    Filed: April 26, 2006
    Date of Patent: June 1, 2010
    Assignee: Medtronic, Inc.
    Inventors: Lonny V. Cabelka, David E. Manahan, Forrest C. M. Pape, John D. Wahlstrand
  • Patent number: 7720543
    Abstract: An implantable medical device (IMD) includes a telemetry module to communicate with an external device according to a given protocol. To establish a communication session, the IMD will extend active periods of reception on a given channel when some confirmed data is received from the external device. In addition, once a session has been opened, the programmer transmits a short data set (or preamble) for each cycle which the IMD is set to receive. This data set indicates whether additional data will or will not be sent. If no additional data is to be sent during that cycle, then the IMD powers down the receiver for that cycle.
    Type: Grant
    Filed: January 19, 2006
    Date of Patent: May 18, 2010
    Assignee: Medtronic, Inc.
    Inventors: Charles H. Dudding, Javaid Masoud
  • Patent number: 7708768
    Abstract: Methods for treating a network of organs including generating a map of at least a portion of the network of organs using a rendering system; selecting at least one treatment location within the luminal passageway of the network of organs; and applying an energy therapy to the treatment location to treat the smooth muscle tissue, where the energy therapy applied to the respective treatment location is defined by a plurality of parameters that are associated with a map. Such a system allows for historical or ideal treatment parameters to be identified, visually or otherwise to actual treatment locations. Also, control systems and methods for delivery of energy that may include control algorithms that prevent energy delivery if a fault is detected and may provide energy delivery to produce a substantially constant temperature at a delivery site. In some embodiments, the control systems and methods may be used to control the delivery of energy, such as radio frequency energy, to body tissue, such as lung tissue.
    Type: Grant
    Filed: December 21, 2006
    Date of Patent: May 4, 2010
    Assignee: Asthmatx, Inc.
    Inventors: Christopher J. Danek, William J. Wizeman, Tim R. Dalbec, Glendon E. French, Michael D. Laufer