Patents Examined by M. Abutayeh
  • Patent number: 6600563
    Abstract: An optical resonance analysis system comprising a sensor means (60) and an illumination means (400) for generating non-monochromatic illumination. The illumination means (400) further comprises a means for generating illumination at a plurality of angles, a lens system for projecting said illumination at said plurality of angles (390) and a dispersive device (380) for dispersing said illumination at each of said plurality of angles so that there is a correlation between said plurality of angles and the wavelengths of said illumination such that a resonance condition is generated on said sensor mean (60) for all wavelengths generated by said non-monochromatic source simultaneously. The analysis system also comprises a detection means (90) for detecting the reflected or transmitted illumination. Another embodiment comprises an anamorphic imaging means (120).
    Type: Grant
    Filed: July 17, 2000
    Date of Patent: July 29, 2003
    Assignee: Applera Corporation
    Inventors: Dar Bahatt, Jerry E. Cahill, Koichi Nishikida, Enrico G. Picozza, Paul G. Saviano, David H. Tracy, Yongdong Wang
  • Patent number: 6594410
    Abstract: A tunable optical filter filters is provided that has a pair of tunable Bragg grating units optically coupled to respective ports of a 4-port circulator for filtering a selected wavelength band or channel of light from a DWDM input light. Each grating unit includes an array of Bragg gratings written or embedded within a respective tunable optical element to provide a tunable optical filter that functions over a wide spectral range greater than the tunable range of each grating element. The reflection wavelengths of the array of gratings of each respective grating element is spaced at a predetermined spacing, such that when a pair of complementary gratings of the grating elements are aligned, the other complementary gratings are misaligned. Both of the optical elements may be tuned to selectively align each complementary grating over each corresponding spectral range.
    Type: Grant
    Filed: December 29, 2000
    Date of Patent: July 15, 2003
    Assignee: CiDRA Corporation
    Inventors: Alan D. Kersey, Michael A. Davis, Martin A. Putnam, Timothy J. Bailey
  • Patent number: 6573988
    Abstract: A cuvette for a spectrometric analysis instrument has two opposing windows made of a material, which is transparent to the light of the waveband used for the analysis. The windows define a limited light path of a light beam passing through a cavity inside the cuvette. When using cuvettes having windows of a material, such as diamond, having a refractive index considerably different from the fluid to be analyzed, the window surfaces forming the cuvette cavity should not be parallel, thereby ensuring that the internal distances between opposed areas of the window surfaces will vary across the transparent windows. Thereby any internal reflections within the cavity will add in almost random phase, avoiding any tendency to resonance. This is very advantageous when the instrument is a member of a plurality of instruments, which must be standardized in order to be able to provide uniform calibrations for said plurality of instruments.
    Type: Grant
    Filed: April 3, 2000
    Date of Patent: June 3, 2003
    Assignee: Foss Electric A/S
    Inventors: Henrik Thomsen, Henning Gråskov
  • Patent number: 6570700
    Abstract: A microstructure to interact with electromagnetic waves by changing optical aspect in selected areas in response to an external signal, the microstructure comprising: a plurality of responsive elements, each responsive element capable of presenting at least two different optical aspects and changing between the optical aspects based on an applied external signal; and a support substrate containing the responsive elements, wherein at least a part of the support substrate defines an optical structure containing a plurality of assisting optical elements each optically enlarging an image from the responsive elements associated with the assisting optical element.
    Type: Grant
    Filed: March 14, 2001
    Date of Patent: May 27, 2003
    Assignee: 3M Innovative Properties Company
    Inventors: David A. Engler, Rolf W. Biernath, John C. Nelson
  • Patent number: 6567586
    Abstract: An optical fiber collimator (100) in an optical system, includes a pair of optical fibers (108) having emitting cleaved planes (112) to provide a substantially uniform angled side surface for forming a prescribed angle (101) relative to the optical axis (105) of the optical system. The pair of optical fibers (108) are disposed coplanarly in the object plane of the optical system for sharing the optical axis and separated from each other and from the optical axis on the same object plane. Optically coupled to the pair of fibers, a microlens (106) has a sloped rear surface (114) opposite a rotationally symmetric microlens surface (116) which bound a volume having a homogeneous index of refraction. The pair of fibers (108) are positioned near the focal plane containing the optical axis (105) of the microlens for the generation or reception of collimated beams at the prescribed angle (101) relative to the optical axis (105) of the microlens (106).
    Type: Grant
    Filed: July 24, 2001
    Date of Patent: May 20, 2003
    Assignee: Corning Incorporated
    Inventors: Christopher P. Brophy, Anita K. Thompson
  • Patent number: 6552842
    Abstract: A reflective coherent spatial light modulator (RCSLM) includes a subwavelength resonant grating structure (SWS), the SWS including at least one subwavelength resonant grating layer (SWL) have a plurality of areas defining a plurality of pixels. Each pixel represents an area capable of individual control of its reflective response. A structure for modulating the resonant reflective response of at least one pixel is provided. The structure for modulating can include at least one electro-optic layer in optical contact with the SWS. The RCSLM is scalable in both pixel size and wavelength. A method for forming a RCSLM includes the steps of selecting a waveguide material and forming a SWS in the waveguide material, the SWS formed from at least one SWL, the SWL having a plurality of areas defining a plurality of pixels.
    Type: Grant
    Filed: April 13, 2001
    Date of Patent: April 22, 2003
    Assignee: UT-Battelle, LLC
    Inventors: John T. Simpson, Roger K. Richards, Donald P. Hutchinson, Marcus L. Simpson
  • Patent number: 6535664
    Abstract: A method and optical routing apparatus for directing an optical signal are disclosed. The optical routing apparatus includes an input port configured to provide the optical signal along an incident path and a plurality of output ports configured to receive the optical signal. An optical switching arrangement including a rotatable mirror and a plurality of fixed mirrors is operated to route the optical signal from the input port to one of the output ports depending on the configuration of the optical switching arrangement.
    Type: Grant
    Filed: December 20, 2000
    Date of Patent: March 18, 2003
    Assignee: Network Photonics, Inc.
    Inventor: Robert Anderson