Patents Examined by M. R. Sedighian
  • Patent number: 9312980
    Abstract: We disclose a communication system in which a cluster of network nodes is interconnected using an optical interconnect and an electrical switch engine. A bidirectional communication channel between any two of the network nodes can be set up using two bidirectional optical links established through the optical interconnect and one bidirectional electrical link configured to connect the ends of the two bidirectional optical links through the switch engine. The optical interconnect has a structure that enables the communication system to be (re)configurable for a desired level of oversubscription. Some embodiments of the communication system can advantageously be used in a data-center network.
    Type: Grant
    Filed: November 6, 2014
    Date of Patent: April 12, 2016
    Assignee: Alcatel Lucent
    Inventor: Joseph K. Kakande
  • Patent number: 9312951
    Abstract: The present disclosure provides an optical transceiver, method of mapping, and method of management utilizing a plurality of Optical Channel Transport Unit layer k (OTUk) links to form an aggregate signal, such as, for example, 10 OTU2s to provide a single 100 Gigabit Ethernet (100 GbE) signal. Specifically, the present invention enables use of existing circuitry and methods at lower speed signals, e.g. 10 G, to support higher speed aggregate signals, e.g. 100 G. The present invention may be utilized to support carrier-grade OTN applications with optical transceivers such as, for example, pluggable optical transceivers. In an exemplary embodiment, the present invention includes a method which receives a plurality of signals, frames each of the plurality of signals into an OTUk frame, and manages/monitors each of the plurality of signals in an OTUk frame in the aggregate.
    Type: Grant
    Filed: January 29, 2013
    Date of Patent: April 12, 2016
    Assignee: Menara Networks, Inc.
    Inventors: Adam R. Hotchkiss, Siraj Nour El-Ahmadi, Salam El-Ahmadi, Gabriel E. Cardona
  • Patent number: 9307302
    Abstract: A Passive Optical Network (PON) Switch which breaks down and regenerates a point to multipoint optical communication signals that are compliant with a PON protocol between an Optical Line Terminal (OLT) and an Optical Network Unit (ONU) by performing a conversion between optical communication signals compliant with PON protocol and data units compliant with Ethernet protocol.
    Type: Grant
    Filed: November 11, 2013
    Date of Patent: April 5, 2016
    Assignee: Marvell World Trade Ltd.
    Inventors: Israel Ben-Shahar, Dimitry Melts, Roman Kleinerman
  • Patent number: 9299249
    Abstract: A remotely controllable electronic device comprises an infrared receiver, a control unit and a toggle detector. The infrared receiver is for wirelessly receiving a plurality of control signals. The control unit is coupled to the infrared receiver and generates a plurality of function signals. Each function signal is corresponding to one of the control signals received by the infrared receiver. The toggle detector is coupled to the control unit and receives electricity from a power source through a switching element. The toggle detector determines the power status of the electricity coming from the switching element in a predetermined period and generates a learning mode signal to the control unit when the switching element is switched a plurality of times during the predetermined period. The remotely controllable electronic device could be control by the control signals of any infrared remote control.
    Type: Grant
    Filed: April 11, 2014
    Date of Patent: March 29, 2016
    Inventor: Wei-Chih Huang
  • Patent number: 9300400
    Abstract: An example apparatus comprises an optical transmitter which includes a first processor and at least two optical modulators. The first processor is configured to generate a first electronic representation for each of at least two optical signals for carrying payload data modulated according to a one-dimensional (1-D) modulation format, and to induce on respective ones of the first electronic representations an amount of dispersion that depends on a power-weighted accumulated dispersion (ADPW) of a transmission link through which the at least two optical signals are to be transmitted thereby generating complex-valued electronic representations of pre-dispersion-compensated optical signals. Each of the at least two optical modulators modulate a respective analog version corresponding to a respective one of the complex-valued electronic representations onto a polarization of an optical carrier.
    Type: Grant
    Filed: December 31, 2012
    Date of Patent: March 29, 2016
    Assignee: Alcatel Lucent
    Inventors: Xiang Liu, Peter J Winzer, Andrew R Chraplyvy, Robert W Tkach, Chandrasekhar Sethumadhavan
  • Patent number: 9294217
    Abstract: Embodiments of the present invention relate to the optical communication field and disclose an optical signal multiplexing method and an optical multiplexer. The method provided in the present invention includes: adjusting polarization states of two of four optical signals to be multiplexed, and preferably, mutually orthogonal to, the polarization states of the remaining two optical signals; combining one optical signal in the adjusted polarization state with one optical signal in the unadjusted polarization state into one optical signal through polarization multiplexing; and combining the two optical signals obtained through polarization multiplexing into one optical signal.
    Type: Grant
    Filed: January 14, 2014
    Date of Patent: March 22, 2016
    Assignee: HUAWEI TECHNOLOGIES CO., LTD.
    Inventors: Xiaolu Song, Wenbin Jiang, Qi Deng, Li Zeng
  • Patent number: 9294191
    Abstract: A system comprises a source of entangled photon pairs. The source is to place a signal photon and an idler photon in individual unknown quantum states but in a known entangled quantum state. One or more transmission channels are connected to the source. Each of the one or more transmission channels transmits one of the signal photon or the idler photon. Each of the one or more transmission channels is to substantially balance an instantaneous transmission loss with an instantaneous transmission gain distributed over a transmission distance. Analysis interferometers are configured to receive a corresponding one of the signal photon or the idler photon. Each of the one or more analysis interferometers is to perform a basis measurement on one of the signal photon or the idler photon. Single-photon detectors detect one of the signal photon or the idler photon.
    Type: Grant
    Filed: October 4, 2013
    Date of Patent: March 22, 2016
    Assignee: Vencore Labs, Inc.
    Inventors: Nicholas A. Peters, Anjali Agarwal, Paul Toliver
  • Patent number: 9287990
    Abstract: An optical modulation apparatus for modulating an electromagnetic (e.g., radio frequency (RF)) signal onto an optical carrier signal may be arranged to feed back at least a portion of the optical carrier signal, while excluding first-order sidebands, which may help increase modulation efficiency and improve output power, while retaining high modulation bandwidth. Such arrangements may be implemented, for example, using a Fabry-Perot resonator or a ring resonator in combination with a Mach-Zehnder interferometer or a Michelson interferometer.
    Type: Grant
    Filed: April 2, 2014
    Date of Patent: March 15, 2016
    Assignee: Phase Sensitive Innovations, Inc.
    Inventors: Janusz Murakowski, Garrett Schneider, Christopher A. Schuetz, Dennis W. Prather
  • Patent number: 9287974
    Abstract: A portable apparatus for measuring parameters of optical signals propagating concurrently in opposite directions in an optical transmission path between two elements, at least one of the elements being operative to transmit a first optical signal (S1) only if it continues to receive a second optical signal (S2) from the other of said elements, comprises first and second connector means for connecting the apparatus into the optical transmission path in series therewith, and propagating and measuring means connected between the first and second connector means for propagating at least the second optical signal (S2) towards the one of the elements, and measuring the parameters of the concurrently propagating optical signals (S1, S2). The measurement results may be displayed by a suitable display unit. Where one element transmits signals at two different wavelengths, the apparatus may separate parts of the corresponding optical signal portion according to wavelength and process them separately.
    Type: Grant
    Filed: August 26, 2014
    Date of Patent: March 15, 2016
    Assignee: EXFO INC.
    Inventors: Bernard Ruchet, Normand Cyr
  • Patent number: 9287982
    Abstract: A DPOE system and a service auto-configuration method and network based on that system are provided, wherein, the DPOE system includes an acquisition unit, an analyzing unit and a configuration unit; the service auto-configuration network includes a DPOE system, a back-office management system and an ONU; the service auto-configuration method based on that system includes: the DPOE system acquiring a configuration file from the back-office management system, wherein the configuration file includes configuration information of the ONU and configuration information of an OLT in the DPOE system; the DPOE system analyzing the configuration file and obtaining the configuration information of the ONU and the configuration information of the OLT; configuring the OLT locally and configuring the ONU via a management channel between the OLT and the ONU. Thus the service can be opened without performing further configuration to the OLT individually after the process of the ONU initialization is completed.
    Type: Grant
    Filed: March 20, 2012
    Date of Patent: March 15, 2016
    Assignee: ZTE CORPORATION
    Inventors: Meiyan Zang, Liquan Yuan, Chaoqin Zhang
  • Patent number: 9287972
    Abstract: A distributed optical fiber sound wave detection device is provided with an optical pulse emission unit that causes an optical pulse to be incident into the optical fiber, and a Rayleigh scattered light reception unit that receives Rayleigh scattered light produced inside the optical fiber. The optical pulse emission unit outputs the optical pulse that is modulated using a code sequence which has a predetermined length and by which the optical pulse is divided into a plurality of cells. The Rayleigh scattered light reception unit includes a phase variation derivation unit that performs demodulation corresponding to the modulation in the optical pulse emission unit on the Rayleigh scattered light and determines a phase variation thereof from the demodulated Rayleigh scattered light, and a sound wave detection unit that determines a sound wave that has struck the optical fiber from the phase variation determined by the phase variation derivation unit.
    Type: Grant
    Filed: September 11, 2012
    Date of Patent: March 15, 2016
    Assignee: NEUBREX CO., LTD
    Inventors: Kinzo Kishida, Kenichi Nishiguchi, Che-Hsien Li
  • Patent number: 9287985
    Abstract: A portable electronic device with an IrDA transmitter LED is used to transmit both IrDA signals and remote control infrared signals. The device transmits remote control infrared signals with reduced power consumption. During a relatively longer remote control signal pulse, an inductor saturates and stores energy when a drive current flows from a power supply, through the inductor and then through the LED. An energy-transferring circuit transfers a portion of the energy stored in the inductor to the power supply. Energy is transferred when the drive current is cut and the voltage across the inductor surges, which causes an overflow current to flow through a diode in the energy-transferring circuit and to the power supply. The inductor is a planar coil of traces on a printed circuit board and therefore costs less to manufacture than does a toroidal coil of wires.
    Type: Grant
    Filed: October 27, 2013
    Date of Patent: March 15, 2016
    Assignee: IXYS Intl Limited
    Inventor: Alan Grace
  • Patent number: 9270384
    Abstract: Presented herein are sub-sampled carrier phase recovery techniques. In accordance with one example, a plurality of consecutive symbols associated with a received optical signal is obtained. Carrier phase recovery of the optical signal is performed using one or more carrier phase estimation stages. At each of the one or more carrier phase estimation stages, a subset of the plurality of consecutive symbols is selected for use in carrier phase estimation. The subset of symbols selected for use in carrier phase estimation at each of the one or more stages comprises symbols that provide the most phase recovery information for each of the one or more stages.
    Type: Grant
    Filed: January 14, 2014
    Date of Patent: February 23, 2016
    Assignee: Cisco Technology, Inc.
    Inventors: Andreas Bisplinghoff, Chris Fludger
  • Patent number: 9270383
    Abstract: An optical receiver may receive input signals carried by respective sub-carriers. The optical receiver may determine, based on the input signals, a compensation value to be used to modify an input signal. The optical receiver may use the compensation value to adjust the input signal to form a modified input signal. The compensation value may be used to modify a frequency or a phase of the input signal. The optical receiver may determine, based on the modified input signal, a phase estimate value that represents an estimated phase associated with the input signal. The optical receiver may combine the compensation value and the phase estimate value to form a phase adjustment signal, may combine the input signal and the phase adjustment signal to form an output signal, and may output the output signal.
    Type: Grant
    Filed: March 31, 2014
    Date of Patent: February 23, 2016
    Assignee: Infinera Corporation
    Inventors: Han H. Sun, Sandy Thomson, Yuejian Wu, Kuang-Tsan Wu
  • Patent number: 9270369
    Abstract: The present disclosure includes a computer-implemented method of correcting a measured optical signal-to-noise ratio (OSNR) comprising receiving an optical signal and measuring OSNR of the optical signal using an interferometric OSNR monitor device. The method also includes applying a correction table to the measured OSNR to generate a corrected OSNR using a controller, the correction table comprising a correction function to counteract an artifact in the measured OSNR. The method also includes storing the corrected OSNR in a non-transitory computer-readable medium. The present disclosure also includes associated devices applying the correction table and methods of generating the correction table.
    Type: Grant
    Filed: January 13, 2014
    Date of Patent: February 23, 2016
    Assignee: Fujitsu Limited
    Inventors: Jeng-Yuan Yang, Youichi Akasaka, Motoyoshi Sekiya, Takuji Maeda, Hiroki Ooi, Kentaro Nakamura, Satoru Okano
  • Patent number: 9252795
    Abstract: A system for distributing a reference oscillator signal includes a clock having a reference oscillator and a femtosecond laser stabilized by the reference oscillator. The system also includes at least one beamsplitter configured to split the femtosecond laser. The system further includes one or more remote nodes that are spaced from the clock. The remote nodes are configured to generate reference signals based on the split femtosecond laser.
    Type: Grant
    Filed: October 10, 2013
    Date of Patent: February 2, 2016
    Assignee: Raytheon Company
    Inventors: Steven R. Wilkinson, Matthew T. Cashen, Todd O. Clatterbuck
  • Patent number: 9252885
    Abstract: A method for manufacturing a wavelength division multiplexing transmission apparatus, includes arranging laser devices in a line and fixing the laser devices to a first substrate, fixing to a second substrate reflectors arranged to multiplex laser beams emitted from the laser devices and to generate wavelength multiplexed light, and arranging collimator lenses on paths of the laser beams, adjusting positions of the collimator lenses so that the laser beams making up the wavelength multiplexed light become parallel and, thereafter, fixing the collimator lenses to the first substrate.
    Type: Grant
    Filed: April 2, 2014
    Date of Patent: February 2, 2016
    Assignee: Mitsubishi Electric Corporation
    Inventor: Shinichi Kaneko
  • Patent number: 9246581
    Abstract: A communication light detecting structure includes a communication optical fiber configured to transmit communication light; a leakage optical fiber optically connected to the middle of the communication optical fiber via optical connection portions, the leakage optical fiber being different in core refractive index from the communication optical fiber; and a light detecting unit configured to detect part of the communication light leaking from the optical connection portions as leakage light. A communication light detecting optical connector includes the communication light detecting structure. A communication light detecting optical cable includes the communication light detecting structure. The communication optical fiber and the leakage optical fiber may have the same core diameter. The communication optical fiber and the leakage optical fiber may have the same cladding refractive index.
    Type: Grant
    Filed: April 3, 2014
    Date of Patent: January 26, 2016
    Assignee: HITACHI METALS, LTD.
    Inventors: Kanako Suzuki, Yoshihiro Nakatani
  • Patent number: 9246599
    Abstract: In a coherent optical receiver, sufficient demodulation becomes impossible and consequently receiving performance deteriorates if an interchannel skew arises, therefore, a coherent optical receiver according to an exemplary aspect of the invention includes a local light source; a 90-degree hybrid circuit; an optoelectronic converter; an analog-to-digital converter; and a digital signal processing unit, wherein the 90-degree hybrid circuit makes multiplexed signal light interfere with local light from the local light source, and outputs a plurality of optical signals separated into a plurality of signal components; the optoelectronic converter detects the optical signals and outputs detected electrical signals; the analog-to-digital converter quantizes the detected electrical signals and outputs quantized signals; and the digital signal processing unit includes a skew compensation unit for compensating a difference in propagation delay between the plurality of signal components, and a demodulation unit for dem
    Type: Grant
    Filed: November 13, 2013
    Date of Patent: January 26, 2016
    Assignee: NEC CORPORAITON
    Inventors: Wakako Yasuda, Junichi Abe, Kiyoshi Fukuchi
  • Patent number: 9240854
    Abstract: An OLT includes an OLT control unit that generates a control signal for controlling a power saving operation of an ONU by specifying a different idle period with respect to a first power saving operation in which an optical receiver is operated while an optical transmitter of the ONU is controlled to a power saving state and a second power saving operation for controlling the optical transmitter and the optical receiver to the power saving state, and a station-side transmitter that transmits the control signal generated by the OLT control unit to the ONU. The ONU includes an ONU control unit that receives the control signal via the optical receiver to selectively perform the first power saving operation and the second power saving operation based on the idle period specified by the control signal.
    Type: Grant
    Filed: January 27, 2012
    Date of Patent: January 19, 2016
    Assignee: Mitsubishi Electric Corporation
    Inventors: Hiroaki Mukai, Fumihiko Tano, Masaki Tanaka