Patents Examined by Marc Armand
  • Patent number: 10181508
    Abstract: Provided is a guard ring section to which a fine processing is easily applied. Provided is a semiconductor device comprising: a semiconductor substrate; an active region formed in the semiconductor substrate; and a guard ring section formed more outside than the active region in the semiconductor substrate, wherein the guard ring section includes: a guard ring formed in a circular pattern on an upper surface of the semiconductor substrate; an interlayer insulating film formed above the guard ring; a field plate formed in a circular pattern along the guard ring and above the interlayer insulating film; and a tungsten plug formed in a circular pattern along the guard ring and penetrating the interlayer insulating film to connect the guard ring and the field plate.
    Type: Grant
    Filed: March 1, 2017
    Date of Patent: January 15, 2019
    Assignee: FUJI ELECTRIC CO., LTD.
    Inventors: Hiroyuki Tanaka, Kota Ohi, Yuichi Onozawa, Yoshihiro Ikura, Kazutoshi Sugimura
  • Patent number: 10175268
    Abstract: A method of estimating a line voltage is provided that includes configuring a capacitive probe to a power line, injecting a perturbation voltage onto the capacitive probe, where the perturbation voltage has a different frequency than a frequency of the line voltage, measuring, using a capacitive sensor, a retrieved perturbation voltage, where the retrieved perturbation voltage is dependent on a capacitance between the capacitive probe and a ground capacitance, using an appropriately programmed computer to track real time changes in the capacitance of the capacitive probe, and estimating a line voltage.
    Type: Grant
    Filed: April 14, 2016
    Date of Patent: January 8, 2019
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Raffi Sevlian, Ram Rajagopal
  • Patent number: 10177181
    Abstract: There is provided a photodiode array including a semiconducting substrate and a plurality of photodiodes that are disposed at a surface of the substrate. Each photodiode is laterally spaced apart from neighboring photodiodes by a lateral substrate surface region. An optical interface surface of the substrate is arranged for accepting external input radiation. A plurality of electrically conducting fuses are disposed on the substrate surface. Each fuse is connected to a photodiode in the plurality of photodiodes. Each fuse is disposed at a lateral substrate surface region that is spaced apart from neighboring photodiodes in the plurality of photodiodes.
    Type: Grant
    Filed: May 27, 2015
    Date of Patent: January 8, 2019
    Assignee: Massachusetts Institute of Technology
    Inventor: Michael J. Grzesik
  • Patent number: 10177152
    Abstract: Some embodiments include an integrated capacitor assembly having a conductive pillar supported by a base, with the conductive pillar being included within a first electrode of a capacitor. The conductive pillar has a first upper surface. A dielectric liner is along an outer surface of the conductive pillar and has a second upper surface. A conductive liner is along the dielectric liner and is included within a second electrode of the capacitor. The conductive liner has a third upper surface. One of the first and third upper surfaces is above the other of the first and third upper surfaces. The second upper surface is at least as high above the base as said one of the first and third upper surfaces. Some embodiments include memory arrays having capacitors with pillar-type first electrodes.
    Type: Grant
    Filed: July 21, 2017
    Date of Patent: January 8, 2019
    Assignee: Micron Technology, Inc.
    Inventors: Gurtej S. Sandhu, Matthew N. Rocklein, Brett W. Busch
  • Patent number: 10175188
    Abstract: A trenched base capacitive humidity sensor includes a plurality of trenches formed in a conductive layer, such as polysilicon or metal, on a substrate. The trenches are arranged parallel to the each other and partition the conductive layer into a plurality of trenched silicon electrodes. At least two trenched silicon electrodes are configured to form a capacitive humidity sensor. The trenches that define the trenched silicon electrodes can be filled partially (e.g., sidewall coverage) or completely with polyimide (Pl) or silicon nitride (SiN). A polyimide layer may also be provided on the conductive layer over the trenches and trenched electrodes. The trenches and the trenched silicon electrodes may have different widths to enable different sensor characteristics in the same structure.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: January 8, 2019
    Assignee: Robert Bosch GmbH
    Inventors: Gary O'Brien, Ando Feyh, Andrew Graham, Ashwin Samarao, Gary Yama
  • Patent number: 10177093
    Abstract: A semiconductor device and a method of manufacturing a semiconductor device, the device including gate structures on a substrate; source/drain layers on portions of the substrate that are adjacent the gate structures, respectively; first contact plugs contacting upper surfaces of the source/drain layers, respectively; a second contact plug contacting one of the gate structures, a sidewall of the second contact plug being covered by an insulating spacer; and a third contact plug commonly contacting an upper surface of at least one of the gate structures and at least one of the first contact plugs, at least a portion of a sidewall of the third contact plug not being covered by an insulating spacer.
    Type: Grant
    Filed: April 26, 2017
    Date of Patent: January 8, 2019
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Hyo-Jin Kim, Chang-Hwa Kim, Hwi-Chan Jun, Chul-Hong Park, Jae-Seok Yang, Kwan-Young Chun
  • Patent number: 10177252
    Abstract: A device includes a semiconductor substrate, a doped isolation barrier disposed in the semiconductor substrate, a body region disposed in the semiconductor substrate within the doped isolation barrier and in which a channel is formed during operation, an isolation contact disposed at the semiconductor substrate and to which a voltage is applied during operation, and a plurality of reduced surface field (RESURF) layers disposed in the semiconductor substrate, the plurality of reduced surface field (RESURF) layers being arranged in a stack between the body region and the isolation contact.
    Type: Grant
    Filed: November 10, 2016
    Date of Patent: January 8, 2019
    Assignee: NXP USA, Inc.
    Inventors: Xin Lin, Hongning Yang, Ronghua Zhu, Jiang-Kai Zuo
  • Patent number: 10170465
    Abstract: A method of forming a vertical finFET and vertical diode device on the same substrate, including forming a channel layer stack on a heavily doped layer; forming fin trenches in the channel layer stack; oxidizing at least a portion of the channel layer stack inside the fin trenches to form a dummy layer liner; forming a vertical fin in the fin trenches with the dummy layer liner; forming diode trenches in the channel layer stack; oxidizing at least a portion of the channel layer stack inside the diode trenches to form a dummy layer liner; forming a first semiconductor segment in a lower portion of the diode trenches with the dummy layer liner; and forming a second semiconductor segment in an upper portion of the diode trenches with the first semiconductor segment, where the second semiconductor segment is formed on the first semiconductor segment to form a p-n junction.
    Type: Grant
    Filed: June 20, 2017
    Date of Patent: January 1, 2019
    Assignee: International Business Machines Corporation
    Inventors: Karthik Balakrishnan, Kangguo Cheng, Pouya Hashemi, Alexander Reznicek
  • Patent number: 10170412
    Abstract: A method for making a microelectronic unit includes forming a plurality of wire bonds on a first surface in the form of a conductive bonding surface of a structure comprising a patternable metallic element. The wire bonds are formed having bases joined to the first surface and end surfaces remote from the first surface. The wire bonds have edge surfaces extending between the bases and the end surfaces. The method also includes forming a dielectric encapsulation layer over a portion of the first surface of the conductive layer and over portions of the wire bonds such that unencapsulated portions of the wire bonds are defined by end surfaces or portions of the edge surfaces that are unconvered by the encapsulation layer. The metallic element is patterned to form first conductive elements beneath the wire bonds and insulated from one another by portions of the encapsulation layer.
    Type: Grant
    Filed: April 12, 2018
    Date of Patent: January 1, 2019
    Assignee: Invensas Corporation
    Inventor: Ilyas Mohammed
  • Patent number: 10170697
    Abstract: Methods for forming magnetic tunnel junctions and structures thereof include cryogenic etching the layers defining the magnetic tunnel junction without lateral diffusion of reactive species.
    Type: Grant
    Filed: September 7, 2016
    Date of Patent: January 1, 2019
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Anthony J. Annunziata, Chandrasekharan Kothandaraman, Nathan P. Marchack, Hiroyuki Miyazoe
  • Patent number: 10170570
    Abstract: According to one embodiment, a semiconductor memory device includes a plurality of electrodes, extending in a first direction and a second direction orthogonal to the first direction are stacked one over the other, and include opposed sides extending in the second direction, a plurality of protrusion portions extending from the first side of the electrodes and spaced from one another in the second direction, and an extraction portion extending from the second side of the electrode. First and second contact plugs extend in a third direction orthogonal to the first and second directions, one of each contacting one of the extraction portions, wherein the extraction portion extending from the uppermost of the electrodes is located closer to the center of the second side in the second direction, than the location of the extraction portion extending from the lowermost of the electrodes.
    Type: Grant
    Filed: March 1, 2018
    Date of Patent: January 1, 2019
    Assignee: TOSHIBA MEMORY CORPORATION
    Inventors: Takeshi Sonehara, Erika Kodama, Nobutaka Nakamura, Tsuneo Inaba, Koichi Nakayama
  • Patent number: 10163658
    Abstract: Embodiments of the present invention are directed to a method of manufacturing a semiconductor package with an internal routing circuit. The internal routing circuit is formed from multiple molding routing layers in a plated and etched copper terminal semiconductor package by using a laser to activate areas of each molding compound layer of the semiconductor package. Each compound filler in the molding compound layer has a metal interior and an insulating outermost shell. The activated molding compound areas in the molding compound layer become metallized in an electroless plating solution to build conductive paths on the molding compound surface, while properties of non-activated molding compound areas are not changed.
    Type: Grant
    Filed: August 2, 2017
    Date of Patent: December 25, 2018
    Assignee: UTAC HEADQUARTERS PTE, LTD.
    Inventors: Saravuth Sirinorakul, Suebphong Yenrudee
  • Patent number: 10163925
    Abstract: An integrated circuit device includes a first and a second semiconductor regions, a first electrode provided above the first semiconductor region, a second electrode provided above the second semiconductor region, a first and a second interconnects. The first and the second semiconductor regions are arranged to be separated from each other in a first direction. Longitudinal directions of the first and second semiconductor regions are a second direction. Longitudinal directions of the first and second electrode are a third direction. The first and second interconnects extend in the first direction and are provided in a region including a region directly above the first electrode and a region directly above the second electrode. The first interconnect is connected to the first electrode. The second interconnect is connected to the second electrode.
    Type: Grant
    Filed: September 7, 2016
    Date of Patent: December 25, 2018
    Assignee: TOSHIBA MEMORY CORPORATION
    Inventors: Hiroki Okamoto, Kiyoshi Okuyama
  • Patent number: 10164105
    Abstract: An integrated circuit device, and a method of forming, including a semiconductor substrate, isolation regions extending into the semiconductor substrate, a semiconductor strip, and a semiconductor fin overlapping and joined to the semiconductor strip is provided. A first dielectric layer and a second dielectric layer are disposed on opposite sidewalls of the semiconductor strip. The integrated circuit device further includes a first conductive liner and a second conductive liner, wherein the semiconductor strip, the first dielectric layer, and the second dielectric layer are between the first conductive liner and the second conductive line. The first conductive liner and the second conductive liner are between, and in contact with, sidewalls of a first portion and a second portion of the isolation regions.
    Type: Grant
    Filed: January 3, 2017
    Date of Patent: December 25, 2018
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventor: Jean-Pierre Colinge
  • Patent number: 10163871
    Abstract: An integrated device that includes a printed circuit board (PCB) and a package on package (PoP) device coupled to the printed circuit board (PCB). The package on package (PoP) device includes a first package that includes a first electronic package component (e.g., first die) and a second package coupled to the first package. The integrated device includes a first encapsulation layer formed between the first package and the second package. The integrated device includes a second encapsulation layer that at least partially encapsulates the package on package (PoP) device. The integrated device is configured to provide cellular functionality, wireless fidelity functionality and Bluetooth functionality. In some implementations, the first encapsulation layer is separate from the second encapsulation layer. In some implementations, the second encapsulation layer includes the first encapsulation layer.
    Type: Grant
    Filed: April 13, 2016
    Date of Patent: December 25, 2018
    Assignee: QUALCOMM Incorporated
    Inventors: Rajneesh Kumar, Chin-Kwan Kim, Milind Shah
  • Patent number: 10164055
    Abstract: Vertical channel field effect transistors and methods of forming the same include forming one or more vertical channels on a bottom source/drain layer. A seed layer is deposited on horizontal surfaces around the one or more vertical channels. A metal gate is deposited on the seed layer. A top source/drain layer is deposited above the one or more vertical channels and the metal gate.
    Type: Grant
    Filed: March 31, 2017
    Date of Patent: December 25, 2018
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Kangguo Cheng, Xin Miao, Wenyu Xu, Chen Zhang
  • Patent number: 10157958
    Abstract: A method includes bonding a Backside Illumination (BSI) image sensor chip to a device chip, forming a first via in the BSI image sensor chip to connect to a first integrated circuit device in the BSI image sensor chip, forming a second via penetrating through the BSI image sensor chip to connect to a second integrated circuit device in the device chip, and forming a metal pad to connect the first via to the second via.
    Type: Grant
    Filed: December 18, 2017
    Date of Patent: December 18, 2018
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Jeng-Shyan Lin, Feng-Chi Hung, Dun-Nian Yaung, Jen-Cheng Liu, Szu-Ying Chen, Wen-De Wang, Tzu-Hsuan Hsu
  • Patent number: 10157914
    Abstract: One embodiment of the instant disclosure provides a semiconductor structure that comprises: a first device layer including a first active layer disposed over a substrate and a first gate layer disposed on the active layer, where at least one of the first active layer and the first gate layer includes a first layer alignment structure; a first bounding layer disposed over the first device layer, the first bounding layer including an opening arranged to detectably expose the first layer alignment structure; and a second device layer disposed over the bounding layer including a second layer alignment structure, where the second layer alignment structure is substantially aligned to the first layer alignment structure through the opening.
    Type: Grant
    Filed: January 10, 2018
    Date of Patent: December 18, 2018
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Yasutoshi Okuno, Yi-Tang Lin
  • Patent number: 10157820
    Abstract: A novel integrated circuit and method thereof are provided. The integrated circuit includes a plurality of first interconnect pads, a plurality of second interconnect pads, a first inter-level dielectric layer, a thin film resistor, and at least two end-caps. The end-caps, which are connectors for the thin film resistor, are positioned at the same level with the plurality of second interconnect pads. Therefore, an electrical connection between the end-caps and the plurality of second interconnect pads can be formed by directly connection of them. An integrated circuit with a thin film resistor can be made in a cost benefit way accordingly, so as to overcome disadvantages mentioned above.
    Type: Grant
    Filed: April 17, 2017
    Date of Patent: December 18, 2018
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yuan-Tai Tseng, Chia-Shiung Tsai, Chung-Yen Chou, Ming-Chyi Liu
  • Patent number: 10157943
    Abstract: Trenched-bonding-dam devices and corresponding methods of manufacture are provided. A trenched-bonding-dam device includes a bonding dam structure positioned upon a top surface of a substrate. The bonding dam structure has a bottom surface attached to a top surface of the substrate, an inner dam surrounded by an outer dam, and a trench between the inner and outer dams. The device may further include an optics system including a lens and an adhesive positioned within a bonding region between a bottom surface of the optics system and a top surface of at least one of the inner and outer dams. The trench may be dimensioned to receive a portion of the excess adhesive flowing laterally out of the bonding region during bonding of the substrate to the optics system, laterally confining the excess adhesive and reducing lateral bleeding of the adhesive.
    Type: Grant
    Filed: January 22, 2016
    Date of Patent: December 18, 2018
    Assignee: OmniVision Technologies, Inc.
    Inventors: Teng-Sheng Chen, Chih-Hung Tu, Kuei-Cheng Liang, Chia-Yang Chang