Patents Examined by Mark Hellner
  • Patent number: 11448740
    Abstract: A portable sensor calibration device that provides a reference to a sensor during a calibration procedure. The sensor calibration device may have a number of adjustable functions providing for functional configurability, such as interchangeable target elements, adjustable pitch, adjustable target mounting, and locking elements.
    Type: Grant
    Filed: December 10, 2019
    Date of Patent: September 20, 2022
    Assignees: Bosch Automotive Service Solutions Inc., Robert Bosch GmbH
    Inventors: Scott Bartkowiak, Weston Myer
  • Patent number: 11442075
    Abstract: The present disclosure relates to a ballistic projectile velocity measurement apparatus that senses and records the times in which a projectile travels through two vertical planes represented by two sensor gates which are spaced horizontally from each other. The sensor gates each utilize an LED laser that emits a laser light through a diffuser along a diffusion angle into a plurality of laser light sensors to create a wall of laser light, and the sensor gates register a break in the wall of light when a ballistic projectile obstructs the light received by at least one laser light sensor. The ballistics apparatus then determines the velocity of the projectile based on the distance between the two gates and difference in time between the two plane-breaking events.
    Type: Grant
    Filed: January 23, 2020
    Date of Patent: September 13, 2022
    Inventor: Charles Hardy
  • Patent number: 11444425
    Abstract: The ultra-short pulse chirped pulse amplification (CPA) laser system and method of operating CPA laser system include outputting nearly transform limited (TL) pulses by a mode locked laser. The system and method further include temporarily stretching the TL pulses by a first Bragg grating providing thus each stretched pulse with a chirp which is further compensated for in a second Bragg grating operating as as a compressor. The laser system and method further include a pulse shaping unit measuring a spectral phase across the recompressed pulse and further adjusting the deviation of the measured spectral phase from that of the TL pulse by generating a corrective signal. The corrective signal is applied to the array of actuators coupled to respective segments of one of the BGs which are selectively actuated to induce the desired phase change, with the one BG thus operating as both stretcher/compressor and pulse shaper.
    Type: Grant
    Filed: March 29, 2018
    Date of Patent: September 13, 2022
    Assignee: IPG PHOTONICS CORPORATION
    Inventors: Alex Yusim, Bruce Jenket, Anton Drozhzhin, George Venus, Igor Samartsev, Dmitry Pestov, Anton Ryabtsev
  • Patent number: 11435446
    Abstract: Methods and systems for combining return signals from multiple channels of a LIDAR measurement system are described herein. In one aspect, the outputs of multiple receive channels are electrically coupled before input to a single channel of an analog to digital converter. In another aspect, a DC offset voltage is provided at the output of each transimpedance amplifier of each receive channel to improve measured signal quality. In another aspect, a bias voltage supplied to each photodetector of each receive channel is adjusted based on measured temperature to save power and improve measurement consistency. In another aspect, a bias voltage supplied to each illumination source of each transmit channel is adjusted based on measured temperature. In another aspect, a multiplexer is employed to multiplex multiple sets of output signals of corresponding sets of receive channels before analog to digital conversion.
    Type: Grant
    Filed: August 6, 2020
    Date of Patent: September 6, 2022
    Assignee: VELODYNE LIDAR USA, INC.
    Inventors: David S. Hall, Rajanatha Shettigara, Nathan Slattengren, Aaron Chen, Anand Gopalan
  • Patent number: 11435232
    Abstract: A laser energy meter circuit, method, and system for measuring excitation and ionization of a reactant. The laser energy meter circuit includes a pyroelectric detector head configured to receive laser pulses and output current signals; an amplifier having a first amplifier input and an amplifier output configured to generate amplified voltage signals; a sample-and-hold circuit; a trigger circuit connected to a second sample-and-hold input, wherein the trigger circuit is configured to receive a TTL signal and generate a delayed output pulse, Q1 and a trigger signal, Q2; a sample-and-hold circuit output configured to output the maximum pulse voltage when the trigger signal is received at the second sample-and-hold input; a switched capacitor bank connected to the sample-and-hold circuit output; and a peak detector circuit configured to measure a magnitude of the maximum pulse voltage and generate an averaged DC maximum pulse voltage signal.
    Type: Grant
    Filed: May 13, 2022
    Date of Patent: September 6, 2022
    Assignee: KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS
    Inventor: Khaled Gasmi
  • Patent number: 11422236
    Abstract: Optical systems and methods for collecting distance information are disclosed. An example optical system includes a first transmitting optic, a plurality of illumination sources, a pixel array comprising at least a first column of pixels and a second column of pixels, each pixel in the first column of pixels being offset from an adjacent pixel in the first column of pixels by a first pixel pitch, the second column of pixels being horizontally offset from the first column of pixels by the first pixel pitch, the second column of pixels being vertically offset from the first column of pixels by a first vertical pitch; and a set of input channels interposed between the first transmitting optic and the pixel array.
    Type: Grant
    Filed: December 15, 2021
    Date of Patent: August 23, 2022
    Assignee: Ouster, Inc.
    Inventors: Angus Pacala, Mark Frichtl, Marvin Shu, Eric Younge
  • Patent number: 11421989
    Abstract: A surveying instrument include a surveying instrument including a surveying instrument main body, a measuring direction image pickup module for acquiring a first image, a distance measuring unit for measuring a distance to the object, a projecting direction detecting module for detecting a projecting direction of the distance measuring light, a time detector for generating a signal of a reference time, a downward image pickup module for acquiring a second image, an attitude detector for detecting a tilt of the surveying instrument main body and an arithmetic control module, wherein the arithmetic control module is configured to detect a change between the first images or the second images, determine a measuring point of the object with respect to the vertical lower image based on the change between the images and the detection results of the distance measuring unit and the projecting direction detecting module and the reference time.
    Type: Grant
    Filed: June 9, 2020
    Date of Patent: August 23, 2022
    Assignee: TOPCON Corporation
    Inventors: Fumio Ohtomo, Tetsuji Anai, Kaoru Kumagai
  • Patent number: 11422244
    Abstract: Examples are provided that use multiple analog-to-digital converters (ADCs) to disambiguate FMCW ladar range returns from one or more targets that may be greater than the Nyquist frequencies of one or more of the ADCs. Examples are also provided that use a first and a second laser FMCW return signal (e.g., reflected beam) in combination with two or more ADCs to disambiguate one or more target ranges (e.g., distances to one or more objects).
    Type: Grant
    Filed: September 25, 2018
    Date of Patent: August 23, 2022
    Assignee: Bridger Photonics, Inc.
    Inventors: Michael James Thorpe, Peter Aaron Roos
  • Patent number: 11422258
    Abstract: Methods and apparatuses are described for frequency-modulated continuous-wave (FMCW) light detection and ranging (LiDAR). Examples are provided where high-closed-loop bandwidth, active feedback applied to laser frequency chirps may provide increases in the free-running laser coherence length for long-range FMCW distance measurements. Examples are provided that use an asymmetric sideband generator within an active feedback loop for higher closed-loop bandwidth. Examples of using a single shared reference interferometer within multiple active feedback loops that may be used for increasing the coherence length of multiple chirped lasers are described. Example calibrators are also described.
    Type: Grant
    Filed: March 16, 2018
    Date of Patent: August 23, 2022
    Assignee: Bridger Photonics, Inc.
    Inventors: Michael James Thorpe, Jason Kenneth Brasseur, Peter Aaron Roos, Nathan Joseph Greenfield, Aaron Thomas Kreitinger
  • Patent number: 11415671
    Abstract: The present disclosure relates to a light detection and ranging (LIDAR) sensor comprising a detector configured to generate a first detector signal at a first delay time following an emission of a first light pulse and to generate at least one second detector signal at the first delay time following an emission of at least a second light pulse; and a processor configured to generate a combined signal for the first delay time based on a combination of the first detector signal and the at least one second detector signal. Depending on the type of combination, the combined signal can be used for interference detection or mitigation.
    Type: Grant
    Filed: November 20, 2019
    Date of Patent: August 16, 2022
    Inventors: Paul Meissner, Michiel Helsloot, Alexander Melzer, Vladimir Petrovic, Christoph Steiner, Hendrikus Van Lierop
  • Patent number: 11417997
    Abstract: An M-output, where M>1, chirped pulse amplification chain that includes a stretcher of stretching factor tx_stretch, M amplifiers in cascade, M output compressors respectively placed at the output of each amplifier, wherein it comprises: a partially compressing device placed between the stretcher and the first amplifier, this partially compressing device having at least one partial compression factor, the one (or more than one) partial compression factor(s) being lower than tx_stretch, and an optical switch configured to receive a beam output from the stretcher and to direct it directly to the first amplifier of the cascade or to the partially compressing device depending on the output compressor chosen among the output compressors.
    Type: Grant
    Filed: December 7, 2017
    Date of Patent: August 16, 2022
    Assignee: THALES
    Inventors: Paul Jougla, Sébastien Laux, Christophe Simon-Boisson, Mathilde Charbonneau
  • Patent number: 11411367
    Abstract: Multi-stage fiber amplifiers can amplify signals from a few Watts to several kilowatts. These amplifiers are limited in power by intensity instabilities resulting from a sequence of nonlinear optical effects. These nonlinear optical effects include stimulated Brillouin scattering (SBS), with produces a high-intensity pulse close to the signal wavelength that propagates backward up the amplifier chain, causing permanent damage to the upstream components. This SBS pulse can be blocked by an optical isolator that blocks backward-propagating light at or near the signal wavelength. At high enough power levels, the SBS pulse can also induce backward-propagating light at wavelengths tens to hundreds of nanometers away from the signal wavelength. This SBS-Pulse Induced Non-linear Spectrum light is outside the isolator's reject band, so it can propagate upstream and de-stabilize the upstream amplifier stages.
    Type: Grant
    Filed: March 23, 2020
    Date of Patent: August 9, 2022
    Assignee: Massachusetts Institute of Technology
    Inventors: Andrew Benedick, Kevin Creedon, John J. Zayhowski
  • Patent number: 11402472
    Abstract: A light detection and ranging (LiDAR) system includes light emitters that emit beams of light of substantially equal intensities. The light emitters form a beam polarization pattern with beams having varying polarizations. The LiDAR system also will include a receiver to receive light reflected from the object. An analyzer will determine characteristic differences between the beam polarization pattern of the beams emitted toward the object and an intensity pattern of the light reflected from the object, determine a reflection position that is associated with the light reflected from the object, and use the determined characteristic differences to determine whether the reflection position is a position of the object or a position of a ghost.
    Type: Grant
    Filed: April 16, 2019
    Date of Patent: August 2, 2022
    Assignee: Argo AI, LLC
    Inventors: Viorel C. Negoita, Christopher John Trowbridge, Gary W. Kamerman
  • Patent number: 11402401
    Abstract: An imaging system includes a body, a stage coupled to the body, and a focal plane array including one or more detectors and coupled to the stage. The imaging system also includes a lens assembly including an objective lens and a rear lens group. The lens assembly is coupled to the body and optically coupled to the focal plane. The imaging system further includes a transparent plate coupled to the body and optically coupled to the objective lens and the focal plane array. The transparent plate is disposed between the objective lens and the focal plane array. Additionally, the imaging system includes an actuator coupled to the transparent plate and configured to rotate the transparent plate relative to an optical axis of the imaging system.
    Type: Grant
    Filed: August 29, 2019
    Date of Patent: August 2, 2022
    Assignee: DRS Network & Imaging Systems, LLC
    Inventors: Mark Muzilla, Harvey M. Spencer, Raymond Wagoner
  • Patent number: 11402471
    Abstract: The present invention provides a TOF range finder. A TOF range finder 1 includes a light source 2, which emits modulated emitting light La, a light source control unit 51, which drives the light source 2, an image sensor 10, which detects modulated reflected light, and a distance calculating unit 53, which calculates the distance to a distance measurement object 7 based on the phase difference between emitting light La and reflected light. The modulated light is generated in the form of a periodic waveform which contains an only odd multiple wave frequency component and at least one even multiple wave frequency component.
    Type: Grant
    Filed: May 9, 2019
    Date of Patent: August 2, 2022
    Assignee: STANLEY ELECTRIC CO., LTD.
    Inventor: Tetsuo Miyazaki
  • Patent number: 11402585
    Abstract: An optical connection structure includes a first spatial multiplex transmission line, a second spatial multiplex transmission line, a first lens arrangement, a second lens arrangement and a first beam diameter conversion portion. The first spatial multiplex transmission line has a plurality of first transmission lines. The second spatial multiplex transmission line has a plurality of second transmission lines. The first lens arrangement is optically coupled with the first spatial multiplex transmission line. The second lens arrangement is optically coupled with the second spatial multiplex transmission line. The first beam diameter conversion portion has a first end face and a second end face and arranged between the first spatial multiplex transmission line and the first lens arrangement. The first beam diameter conversion portion is configured such that an optical diameter at the second end face is larger than an optical diameter at the first end face.
    Type: Grant
    Filed: February 28, 2020
    Date of Patent: August 2, 2022
    Assignee: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Masato Tanaka, Hidehisa Tazawa, Osamu Shimakawa, Takafumi Ohtsuka
  • Patent number: 11402505
    Abstract: The chip includes multiple steering waveguides positioned on a base. Each of the steering waveguides is being configured to carry an output signal. The steering waveguides each terminate at a facet. The facets are arranged such that output signals exit the chip through the facets and combine to form a LIDAR output signal. The chip also includes phase tuners positioned on at least a portion of the steering waveguides. Electronics operate the phase tuners so as to tune a phase differential between the output signals on adjacent steering waveguides. The electronics tune the phase differential so as to tune the direction that the LIDAR output signal travels away from the chip.
    Type: Grant
    Filed: January 23, 2019
    Date of Patent: August 2, 2022
    Assignee: SiLC Technologies, Inc.
    Inventors: Dazeng Feng, Bradley Jonathan Luff, Mehdi Asghari
  • Patent number: 11402181
    Abstract: A weapons system with at least two HEL effectors, which have at least one beam guidance system, the use of only one laser source or one pump source for the at least two HEL effectors is provided. The beam guidance systems of the HEL effectors resort to the common laser source or common pump source. An optical link of the common laser source or of the common pump source with the beam guidance system, be it direct or indirect, is implemented by means of at least one optical switching unit, and so at least one functional, complete HEL effector of the weapons system is provided to defend against threats.
    Type: Grant
    Filed: September 6, 2019
    Date of Patent: August 2, 2022
    Assignee: Rheinmetall Waffe Munition GmbH
    Inventors: Markus Jung, Klaus Ludewigt
  • Patent number: 11402510
    Abstract: Methods and systems for wide-angle LiDAR are provided that utilize magnification optics that provide non-uniform resolution in different areas of a Field of View (FoV).
    Type: Grant
    Filed: July 21, 2021
    Date of Patent: August 2, 2022
    Inventors: Robert Baribault, Pierre Olivier
  • Patent number: 11397250
    Abstract: Disclosed is a distance measurement device including a control section. The control section executes control so that an operating voltage for operating a light-receiving section is applied to the light-receiving section at a second time point. The second time point is later than a first time point by a predetermined time. The first time point is a time point at which a light-emitting section operates.
    Type: Grant
    Filed: April 10, 2017
    Date of Patent: July 26, 2022
    Assignee: Sony Corporation
    Inventor: Toyoharu Oohata