Patents Examined by Matthew E Hoban
  • Patent number: 11639469
    Abstract: A semiconductor nanocrystal particle including a transition metal chalcogenide represented by Chemical Formula 1, the semiconductor nanocrystal particle having a size of less than or equal to about 100 nanometers, and a method of producing the same: M1M2Cha3??Chemical Formula 1 wherein M1 is Ca, Sr, Ba, or a combination thereof, M2 is Ti, Zr, Hf, or a combination thereof, and Cha is S, Se, Te, or a combination thereof.
    Type: Grant
    Filed: January 23, 2019
    Date of Patent: May 2, 2023
    Assignees: SAMSUNG ELECTRONICS CO., LTD., THE GOVERNING COUNCIL OF THE UNIVERSITY OF TORONTO
    Inventors: Jihyun Min, Eun Joo Jang, Hyo Sook Jang, Ankit Jain, Edward Sargent, Oleksandr Voznyy, Larissa Levina, Sjoerd Hoogland, Petar Todorovic, Makhsud Saidaminov
  • Patent number: 11639466
    Abstract: A cadmium free quantum dot includes zinc, tellurium, and selenium, and lithium. A full width at half maximum of a maximum luminescent peak of the cadmium free quantum dot is less than or equal to about 50 nanometers and the cadmium free quantum dot has a quantum efficiency of greater than 1%.
    Type: Grant
    Filed: April 17, 2020
    Date of Patent: May 2, 2023
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Yong Wook Kim, Eun Joo Jang, Hyo Sook Jang, Soo Kyung Kwon, Seon-Yeong Kim, Ji-Yeong Kim
  • Patent number: 11639465
    Abstract: A phosphor is specified. The phosphor has the general molecular formula: (MA)a(MB)b(MC)c(MD)d(TA)e(TB)f(TC)g(TD)h(TE)i(TF)j(XA)k(XB)l(XC)m(XD)n:E. In this case, MA is selected from a group of monovalent metals, MB is selected from a group of divalent metals, MC is selected from a group of trivalent metals, MD is selected from a group of tetravalent metals, TA is selected from a group of monovalent metals, TB is selected from a group of divalent metals, TC is selected from a group of trivalent metals, TD is selected from a group of tetravalent metals, TE is selected from a group of pentavalent elements, TF is selected from a group of hexavalent elements, XA is selected from a group of elements which comprises halogens, XB is selected from a group of elements which comprises O, S and combinations thereof, -E=Eu, Ce, Yb and/or Mn, XC?N and XD=C. The following furthermore hold true: a+b+c+d=t; e+f+g+h+i+j=u; k+l+m+n=v; a+2b+3c+4d+e+2f+3g+4h+5i+6j?k?2l?3m?4n=w; 0.8?t?1; 3.5?u?4; 3.5?v?4; (?0.2)?w?0.2 and 0?m<0.
    Type: Grant
    Filed: November 28, 2018
    Date of Patent: May 2, 2023
    Assignee: OSRAM OLED GMBH
    Inventors: Markus Seibald, Dominik Baumann, Tim Fiedler, Stefan Lange, Hubert Huppertz, Daniel Dutzler, Thorsten Schroeder, Daniel Bichler, Gudrun Plundrich, Simon Peschke, Gregor Hoerder, Gina Maya Achrainer, Klaus Wurst
  • Patent number: 11634628
    Abstract: A quantum dot including a semiconductor nanocrystal core and a semiconductor nanocrystal shell disposed on the core and does not include cadmium, wherein the core includes a Group III-V compound, the quantum dot has a maximum photoluminescence peak in a green light wavelength region, a full width at half maximum (FWHM) of the maximum photoluminescence peak is less than about 50 nanometers (nm), and a difference between a wavelength of the maximum photoluminescence peak and a first absorption peak wavelength of the quantum dot is less than or equal to about 25 nanometers, and a production method thereof.
    Type: Grant
    Filed: July 23, 2019
    Date of Patent: April 25, 2023
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Jihyun Min, Seon-Yeong Kim, Eun Joo Jang, Hyo Sook Jang, Soo Kyung Kwon, Yong Wook Kim
  • Patent number: 11631794
    Abstract: A thermoelectric material of the present invention includes copper, tin, and sulfur, wherein a ratio A/B of the number A of copper atoms to the number B of tin atoms is 0.5 to 2.5 and a content of a metal element other than copper and tin is 5 mol % or less with respect to total metal elements. Additionally, the thermoelectric material of the present invention has a thermal conductivity less than 1.0 W/(m·K) at 200 to 400° C.
    Type: Grant
    Filed: April 28, 2017
    Date of Patent: April 18, 2023
    Assignee: NIPPON SHOKUBAI CO., LTD.
    Inventors: Takeo Akatsuka, Hironobu Ono, Shinya Maenosono, Mikio Koyano
  • Patent number: 11623872
    Abstract: Provided are a device and a method for synthesis of a gallium-containing garnet-structured scintillator polycrystalline material. The synthesis device includes a polycrystalline material synthesis chamber (7) made of a thermal insulation material (1); a crucible (3) arranged at the center of the bottom of the polycrystalline material synthesis chamber; an induction coil (2) annularly arranged outside the polycrystalline material synthesis chamber at a position with a height corresponding to that of the crucible; an arc heating device (4) arranged on a central axis of the induction coil in the polycrystalline material synthesis chamber, so as to heat and melt raw materials at the center of the crucible by means of the high temperature generated by arc discharge; the induction coil is connected to a RF induction power supply.
    Type: Grant
    Filed: March 23, 2020
    Date of Patent: April 11, 2023
    Assignee: CHINA ELECTRONICS TECHNOLOGY GROUP CORPORATION NO. 26 RESEARCH INSTITUTE
    Inventor: Yuchong Ding
  • Patent number: 11613503
    Abstract: The ceramic material element includes a main phase of orthorhombic perovskite-structure and a secondary phase due to a heat treatment within 700° C. to 850° C. for a first period followed by a second period within 1140° C. to 1170° C., from a mixture of materials A1, A2, A3, A4 and A5 excluding lead, the materials A1, A2, A3, A4 and A5 having molar ratios R1, R2, R3, R4 and R5, respectively, where the material A1 comprises potassium, the material A2 comprises sodium, the material A3 comprises barium, the material A4 comprises niobium, and the material A5 comprises nickel, and the molar ratio R1 is in a range 0.29-0.32, the molar ratio R2 is in a range 0.20-0.23, the molecular ratio R3 is in a range 0.01-0.02, the molar ratio R4 is in a range 0.54-0.55, and the molar ratio R5 is in a range 0.006-0.011, while a relative ratio of R1/R2 is in the range 1.24-1.52, and a relative ratio of R4/R2 is in the range 2.32-2.62.
    Type: Grant
    Filed: December 1, 2020
    Date of Patent: March 28, 2023
    Assignee: OULUN YLIOPISTO
    Inventor: Yang Bai
  • Patent number: 11613500
    Abstract: Disclosed herein are embodiments of composite hexagonal ferrite materials formed from a combination of Y phase and Z phase hexagonal ferrite materials. Advantageously, embodiments of the material can have a high resonant frequency as well as a high permeability. In some embodiments, the materials can be useful for magnetodielectric antennas.
    Type: Grant
    Filed: March 31, 2021
    Date of Patent: March 28, 2023
    Assignee: Skyworks Solutions, Inc.
    Inventors: Michael David Hill, Srinivas Polisetty, Constance M. Griffith
  • Patent number: 11615901
    Abstract: A ferrite sintered magnet comprises a plurality of main phase grains containing a ferrite having a hexagonal structure, wherein at least some of the main phase grains are core-shell structure grains each having a core and a shell covering the core; and wherein the minimum value of the content of La in the core is [La]c atom %; the minimum value of the content of Co in the core is [Co]c atom %; the maximum value of the content of La in the shell is [La]s atom %; the maximum value of the content of Co in the shell is [Co]s atom %; [La]c+[Co]c is 3.08 atom % or more and 4.44 atom % or less; and [La]s+[Co]s is 7.60 atom % or more and 9.89 atom % or less.
    Type: Grant
    Filed: January 31, 2020
    Date of Patent: March 28, 2023
    Assignee: TDK Corporation
    Inventors: Hiroyuki Morita, Masanori Ikeda, Yoshitaka Murakawa, Shogo Muroya
  • Patent number: 11608569
    Abstract: Methods and wafers for low etch pit density, low slip line density, and low strain indium phosphide are disclosed and may include an indium phosphide single crystal wafer having a diameter of 4 inches or greater, having a measured etch pit density of less than 500 cm?2, and having fewer than 5 dislocations or slip lines as measured by x-ray diffraction imaging. The wafer may have a measured etch pit density of 200 cm?2 or less, or 100 cm?2 or less, or 10 cm?2 or less. The wafer may have a diameter of 6 inches or greater. An area of the wafer with a measured etch pit density of zero may at least 80% of the total area of the surface. An area of the wafer with a measured etch pit density of zero may be at least 90% of the total area of the surface.
    Type: Grant
    Filed: February 26, 2021
    Date of Patent: March 21, 2023
    Assignee: Axt, Inc.
    Inventors: Morris Young, Weiguo Liu, Wen Wan Zhou, Sungnee George Chu, Wei Zhang
  • Patent number: 11608301
    Abstract: A hard lead zirconate titanate (PZT) ceramic has an ABO3 structure with A sites and B sites. The PZT ceramic is doped with Mn and with Nb on the B sites and the ratio Nb/Mn is <2. A piezoelectric multilayer component having such a PZT ceramic and also a method for producing a piezoelectric multilayer component are also disclosed.
    Type: Grant
    Filed: June 12, 2018
    Date of Patent: March 21, 2023
    Assignee: TDK ELECTRONICS AG
    Inventors: Denis Orosel, Markus Puff, Bernhard Döllgast, Alexander Glazunov
  • Patent number: 11608469
    Abstract: The application discloses a method for preparing a nano-quantum dot, a nano-quantum dot material, the application thereof and a quantum dot article, and relates to the technical field of quantum dot material preparation. The method for preparing the nano-quantum dot includes the following steps: rapidly solidifying a high-temperature melt in which a carrier corresponding to a target product ion/atomic group/molecular group is dissolved to obtain a carrier in which the target product nano-quantum dot is embedded. The nano-quantum dot material is prepared by using the method. The nano-quantum dot material is applied to the fields of luminescent devices, optical biological marks, disease detection, semiconductors or photoelectricity. Moreover, a quantum dot article containing the nano-quantum dot material is provided.
    Type: Grant
    Filed: February 26, 2019
    Date of Patent: March 21, 2023
    Inventor: Xuyang Sun
  • Patent number: 11603492
    Abstract: An upconversion single molecule probe is provided that includes a core having a nanoparticle seed crystal, where the nanoparticle seed crystal is an upconversion seed crystal, a first shell enveloping the core, and a second shell enveloping the first shell.
    Type: Grant
    Filed: May 9, 2019
    Date of Patent: March 14, 2023
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Steven Chu, Qian Liu, Yunxiang Zhang, Chunte Peng
  • Patent number: 11597878
    Abstract: A method for producing a rare earth aluminate fluorescent material, including: preparing, as raw materials, cerium oxide having a crystallite diameter in a range of 200 ? or more and 1,600 ? or less, a compound containing at least one kind of a rare earth element Ln selected from the group consisting of Y, La, Lu, Gd, and Tb, a compound containing Al, and depending on necessity a compound containing at least one kind of an element M1 selected from the group consisting of Ga and Sc, wherein a total molar ratio of the rare earth element Ln and cerium is 3, a total molar ratio of Al and the element M1 is a product of a parameter k in a range of 0.95 or more and 1.05 or less and 5, a molar ratio of cerium is a product of a parameter n in a range of 0.005 or more and 0.050 or less and 3, and a molar ratio of the element M1 is a product of a parameter m in a range of 0 or more and 0.02 or less, the parameter k, and 5; and subjecting a mixture of the raw materials to a heat treatment to provide a calcined product.
    Type: Grant
    Filed: December 18, 2019
    Date of Patent: March 7, 2023
    Assignee: NICHIA CORPORATION
    Inventors: Atsushi Yoshinari, Shoji Hosokawa
  • Patent number: 11597010
    Abstract: Provided is a plurality of flaky magnetic metal particles of embodiments, each flaky magnetic metal particle having a flat surface having either or both of a plurality of concavities and a plurality of convexities, the concavities or convexities being arranged in a first direction and each having a width of 0.1 ?m or more, a length of 1 ?m or more, and an aspect ratio of 2 or higher; and a magnetic metal phase containing at least one primary element selected from the group consisting of iron (Fe), cobalt (Co), and nickel (Ni). The flaky magnetic metal particles have an average thickness of between 10 nm and 100 ?m inclusive, and the average value of the ratio of the average length within the flat surface with respect to the thickness is between 5 and 10,000 inclusive.
    Type: Grant
    Filed: August 21, 2018
    Date of Patent: March 7, 2023
    Assignee: KABUSHIKI KAISHA TOSHIBA
    Inventors: Hiroaki Kinouchi, Tomohiro Suetsuna, Takahiro Kawamoto, Yasuyuki Hotta
  • Patent number: 11584887
    Abstract: Provided are an inorganic fluorescent nanoparticle composite that can suppress the degradation of inorganic fluorescent nanoparticles when sealed in glass and a wavelength conversion member using the inorganic fluorescent nanoparticle composite. An inorganic fluorescent nanoparticle composite 1 is made up by including: an inorganic fluorescent nanoparticle 2; and an inorganic fine particle 3 deposited on a surface of the inorganic fluorescent nanoparticle 2.
    Type: Grant
    Filed: November 7, 2017
    Date of Patent: February 21, 2023
    Assignee: NIPPON ELECTRIC GLASS CO., LTD.
    Inventor: Tamio Ando
  • Patent number: 11588097
    Abstract: A transducer is disclosed which includes lead zirconate titanate (PZT) particles mixed with graphene nanoplatelets (GNPs) in a flexible substrate aligned in a first direction, forming a transducer subsystem, a first conductive protective electrode having a width and a length providing an electrical connectivity to an external circuit, a second conductive protective electrode having the width and the length providing an electrical connectivity to the external circuit, wherein the transducer subsystem is sandwiched between the first and second conductive protective electrodes.
    Type: Grant
    Filed: November 28, 2019
    Date of Patent: February 21, 2023
    Assignee: Purdue Research Foundation
    Inventors: Mukerrem Cakmak, Armen Yildirim, Rahim Rahimi
  • Patent number: 11585818
    Abstract: The present invention provides, among other aspects, stabilized chromophoric nanoparticles. In certain embodiments, the chromophoric nanoparticles provided herein are rationally functionalized with a pre-determined number of functional groups. In certain embodiments, the stable chromophoric nanoparticles provided herein are modified with a low density of functional groups. In yet other embodiments, the chromophoric nanoparticles provided herein are conjugated to one or more molecules. Also provided herein are methods for making rationally functionalized chromophoric nanoparticles.
    Type: Grant
    Filed: August 10, 2020
    Date of Patent: February 21, 2023
    Assignee: University of Washington through its Center for Commercialization
    Inventors: Daniel T. Chiu, Changfeng Wu, Xuanjun Zhang, Jiangbo Yu, Fangmao Ye
  • Patent number: 11588076
    Abstract: A radiation-emitting optoelectronic component may include a semiconductor chip or a semiconductor laser which, in operation of the component, emits a primary radiation in the UV region or in the blue region of the electromagnetic spectrum. The optoelectronic component may further include a conversion element comprising a first phosphor configured to convert the primary radiation at least partly to a first secondary radiation having a peak wavelength in the green region of the electromagnetic spectrum between 475 nm and 500 nm inclusive. The first phosphor may be or include BaSi4Al3N9, SrSiAl2O3N2, BaSi2N2O2, ALi3XO4, M*(1?x*?y*?z*) Z*z*[A*a*B*b*C*c*D*d*E*e*N4-n*On*], and combinations thereof.
    Type: Grant
    Filed: April 17, 2018
    Date of Patent: February 21, 2023
    Assignee: OSRAM OPTO SEMICONDUCTORS GMBH
    Inventors: Ion Stoll, Alexander Baumgartner, Alexander Wilm
  • Patent number: 11587705
    Abstract: Provided is an electromagnetic-wave absorber composition and an electromagnetic-wave absorber that can favorably absorb a plurality of electromagnetic waves of different frequencies in a high frequency band in or above the millimeter-wave band. The electromagnetic-wave absorber composition includes a magnetic iron oxide that magnetically resonates at a high frequency in or above the millimeter-wave band and a resin binder. The electromagnetic-wave absorber composition has two or more extrema separated from each other on a differential curve obtained by differentiating a magnetic property hysteresis loop at an applied magnetic field intensity of from 16 kOe to ?16 kOe. The electromagnetic-wave absorber includes an electromagnetic-wave absorbing layer formed of the above-described electromagnetic-wave absorber composition.
    Type: Grant
    Filed: September 12, 2018
    Date of Patent: February 21, 2023
    Assignee: Maxell, Ltd.
    Inventors: Masao Fujita, Toshio Hiroi