Patents Examined by Matthew Martin
  • Patent number: 9923112
    Abstract: A solar cell receiver for use in a concentrating solar system which concentrates the solar energy onto a solar cell for converting solar energy to electricity. The solar cell receiver may include a solar cell mounted on a support and with one or more III-V compound semiconductor layers. An optical element may be positioned over the solar cell and have an optical channel with an inlet that faces away from the solar cell and an outlet that faces towards the solar cell. A frame may be positioned over the support and extend around the solar cell with the frame having an inner side that extends above the support and faces towards the optical element. An encapsulant may be positioned over the support and contained between the optical element and the frame. The encapsulant may have enlarged heights at contact points with the optical element and the frame and a reduced height between the contact points away from the optical element and the frame. The solar cell receiver may be used in a solar cell module.
    Type: Grant
    Filed: June 24, 2014
    Date of Patent: March 20, 2018
    Assignee: SUNCORE PHOTOVOLTAICS, INC.
    Inventors: Lei Yang, Sunil Vaid, Mikhail Kats, Gary Hering, Philip Blumenfeld, Damien Buie, John Nagyvary, James Foresi, Peter Allen Zawadzki
  • Patent number: 9893217
    Abstract: A radio frequency transparent photovoltaic cell includes a back contact layer formed of an electrically conductive material, at least one aperture formed in the back contact layer, and at least one photovoltaic cell section disposed on the back contact layer. An airship includes one or more radio frequency antennas disposed in an interior of the airship. One or more radio frequency transparent photovoltaic cells are disposed on an outer surface of the airship.
    Type: Grant
    Filed: August 14, 2014
    Date of Patent: February 13, 2018
    Assignee: RAYTHEON COMPANY
    Inventors: Daniel F. Sievenpiper, Michael Wechsberg, Fangchou Yang
  • Patent number: 9869491
    Abstract: A heat transfer device having a working fluid capable of circulating around a fluid flow path, the circulation around the fluid flow path bringing the working fluid in and out of thermal contact with a heat source, the heat transfer device comprising: a fluid containing portion internally defining a working fluid flow path; a heat source at least partially in thermal contact with the fluid containing portion; a gas substance generator at least partially within the fluid containing portion, and arranged to generate bubbles of vapor capable of driving the working fluid along a portion of the working fluid flow path in thermal contact with the heat source; wherein, in use, the driven working fluid absorbs heat from the heat source and transports the heat away from the heat source; and the driven working fluid returns to the gas substance generator to be recycled about the fluid flow path.
    Type: Grant
    Filed: March 21, 2012
    Date of Patent: January 16, 2018
    Assignee: Naked Energy Ltd
    Inventors: Richard Boyle, Christophe Williams, Norman Cottington
  • Patent number: 9853174
    Abstract: A photoelectric conversion element includes a first electrode layer, a photoelectric conversion layer, and a second electrode layer. The first electrode layer includes a first base member, and a rough layer formed on the first base member. The photoelectric conversion layer is formed on the rough layer, and the second electrode layer is formed above the photoelectric conversion layer. The rough layer includes a plurality of metal fine particles irregularly connected together and to a surface of the first base member, and the photoelectric conversion layer infiltrates among the plurality of metal fine particles constituting the rough layer.
    Type: Grant
    Filed: November 18, 2013
    Date of Patent: December 26, 2017
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Yuta Moriura, Hitoshi Ishimoto
  • Patent number: 9842952
    Abstract: A photovoltaic cell module, a photovoltaic array including at least two modules, and a method of forming the module are provided. The module includes a first outermost layer and a photovoltaic cell disposed on the first outermost layer. The module also includes a second outermost layer disposed on the photovoltaic cell and sandwiching the photovoltaic cell between the second outermost layer and the first outermost layer. The method of forming the module includes the steps of disposing the photovoltaic cell on the first outermost layer, disposing a silicone composition on the photovoltaic cell, and compressing the first outermost layer, the photovoltaic cell, and the second layer to form the photovoltaic cell module.
    Type: Grant
    Filed: February 25, 2015
    Date of Patent: December 12, 2017
    Assignee: DOW CORNING CORPORATION
    Inventors: Malinda Howell, Donnie Juen, Barry Ketola, Mary Kay Tomalia
  • Patent number: 9842945
    Abstract: A photovoltaic module, and method of making, is disclosed in which a flexible circuit is electrically coupled to a plurality of photovoltaic cells, where the photovoltaic cells are electrically coupled in series to form a series of cells. Each photovoltaic cell has free-standing metallic articles coupled to the top and bottom surfaces of a semiconductor substrate. A cell interconnection element of each photovoltaic cell is electrically coupled to a free-standing metallic article of an adjacent photovoltaic cell, where the interconnection elements of the initial and final cells in the series serve as contact ends for the series of cells. Contact tabs of the flexible circuit are electrically coupled to the contact ends of the series of cells, and a junction box is electrically coupled to a junction box contact region of the flexible circuit.
    Type: Grant
    Filed: May 22, 2017
    Date of Patent: December 12, 2017
    Assignee: Merlin Solar Technologies, Inc.
    Inventors: Alejandro de la Fuente Vornbrock, Arthur Rudin, David Tanner
  • Patent number: 9837593
    Abstract: A thermoelectric conversion material made of a polycrystalline material represented by a composition formula (1) shown below and having an MgAgAs type crystal structure is provided. An insulating coat is provided on at least one surface of the polycrystalline material. Composition formula (1): (Aa1Tib1)xDyX100-x-y, wherein 0.2?a1?0.7, 0.3?b1?0.8, a1+b1=1, 30?x?35, 30?y?35 hold, wherein A is at least one element selected from the group consisting of Zr and Hf, D is at least one element selected from the group consisting of Ni, Co, and Fe, and X is at least one element selected from the group consisting of Sn and Sb.
    Type: Grant
    Filed: December 26, 2014
    Date of Patent: December 5, 2017
    Assignees: Kabushiki Kaisha Toshiba, Toshiba Materials Co., Ltd.
    Inventor: Takao Sawa
  • Patent number: 9818551
    Abstract: Provided are an additive for an electrolytic composition which can suppress the decrease of a short-circuit current and improve an open circuit voltage as compared to the case when conventional 4-TBpy is used as an additive for an electrolytic composition, and an electrolytic composition using this additive and a dye-sensitized solar cell. The additive for an electrolytic composition for use in a dye-sensitized solar cell contains a pyridine derivative having a pyridine ring into which an alkylsilyl group is introduced, and it is preferable that this pyridine derivative has an alkylsilyl group at the 4-position of the pyridine ring, and it is more preferable that the pyridine derivative is 4-(trimethylsilyl) pyridine.
    Type: Grant
    Filed: September 5, 2011
    Date of Patent: November 14, 2017
    Assignee: ADEKA CORPORATION
    Inventors: Minoru Hanaya, Kenji Kakiage, Masafumi Unno, Toru Yano, Kensaku Akimoto, Koichi Sakamaki
  • Patent number: 9813022
    Abstract: A method and apparatus for managing a solar array. Light is measured using a threshold sensor to generate sensor data. A selected threshold is computed for an electrical output generated by a plurality of solar cells in the solar array based on the sensor data using control logic in a control module.
    Type: Grant
    Filed: March 12, 2015
    Date of Patent: November 7, 2017
    Assignee: THE BOEING COMPANY
    Inventors: Scott Benjamin Singer, Dimitri D. Krut, Nasser H. Karam
  • Patent number: 9799815
    Abstract: A thermoelectric converter is provided where an n-type boron carbide element is paired with a p-type boron carbide element and placed between a eat sink and a high temperature are, such as the ocean in which a submarine operates, and the interior of that submarine, respectively. Boron carbide elements suitable for use in this invention are deposited from meta carborane (n-type) together with dopants to emphasize n-type character, such as chromocene, and orthocarborane, together with dopants to emphasize p-type character, such as 1,4 diaminobenzene to form the p-type element.
    Type: Grant
    Filed: September 6, 2012
    Date of Patent: October 24, 2017
    Assignee: QUANTUM DEVICES, LLC
    Inventor: Peter Dowben
  • Patent number: 9793422
    Abstract: The present invention is to grant a margin in the control of a depth of a groove when removing a transparent insulation layer after the transparent insulation layer is formed on the entire surface of the transparent conductive layer, thereby provide a solar cell which has superior productivity in mass manufacturing. A solar cell includes an n-type amorphous silicon layer formed on a front-surface side of an n-type monocrystalline silicon the substrate; a front-surface side transparent conductive layer formed on the n-type amorphous silicon layer; a p-type amorphous silicon layer formed on a rear-surface-side of the substrate; and a rear-surface-side transparent conductive layer formed on the p-type amorphous silicon layer. A front-surface side collector electrode is formed by plating on the front-surface side transparent conductive layer whereas a rear-surface-side collector electrode is formed on the rear-surface-side transparent conductive layer by printing.
    Type: Grant
    Filed: February 17, 2016
    Date of Patent: October 17, 2017
    Assignee: Panasonic Intellectual Property Management Co., Ltd.
    Inventor: Sadaji Tsuge
  • Patent number: 9780722
    Abstract: A solar panel that attains very low cost/Watt objectives is achieved by applying an optical concentrator with planar symmetry in combination with a simple 1-axis tracking system. The concentrator uses a Cassegrain optical system to provide moderate concentration factors that can be adjusted by varying the ratio of the focal lengths of the concave and convex reflecting surfaces. Concentrator dimensions can be scaled to any convenient size. They can be arrayed in parallel to form a solar panel that has the same form factor as a 1-sun solar panel. One-axis tracking is achieved by simply rotating the collector elements in synchronism so the sun is maintained in the plane of symmetry for each of the collector elements that comprise the panel.
    Type: Grant
    Filed: March 5, 2007
    Date of Patent: October 3, 2017
    Inventor: Thomas Robert Wik
  • Patent number: 9779879
    Abstract: The present invention provides an improved redox couple for electrochemical and optoelectronic devices. The redox couple is based on a complex of a first row transition metal, said complex containing at least one mono-, bi-, or tridentate ligand comprising a substituted or unsubstituted ring or ring system comprising a five-membered N-containing heteroring and/or a six-membered ring comprising at least two heteroatoms, at least one of which being a nitrogen atom, said five- or six-membered heteroring, respectively, comprising at least one double bond. The invention also relates to electrolytes and to the devices containing the complex, and to the use of the complex as a redox couple. The invention further provides electrochemical and/or optoelectronic devices comprising a first and a second electrode and, between said first and second electrode, a charge transport layer, said a charge transport layer comprising tetracyanoborate ([B(CN)4]?) and a cationic metal complex functioning as redox-couple.
    Type: Grant
    Filed: February 24, 2012
    Date of Patent: October 3, 2017
    Assignee: Ecole Polytechnique Federale de Lausanne (EPFL)
    Inventors: Mohammad Khaja Nazeeruddin, Michael Graetzel, Etienne Baranoff, Florian Kessler, Jun-Ho Yum, Aswani Yella, Hoi Nok Tsao, Shaik Mohammad Zakeeruddin
  • Patent number: 9773933
    Abstract: In an embodiment, a solar energy system includes multiple photovoltaic modules, each oriented substantially at a same angle relative to horizontal. The angle is independent of a latitude of an installation site of the solar energy system and is greater than or equal to 15 degrees. The solar energy system defines a continuous area within a perimeter of the solar energy system. The solar energy system is configured to capture at the photovoltaic modules substantially all light incoming towards the continuous area over an entire season.
    Type: Grant
    Filed: August 1, 2013
    Date of Patent: September 26, 2017
    Assignee: TENKSOLAR, INC.
    Inventors: Dallas W. Meyer, Lowell J. Berg, Kurt Korkowski, Lance E. Stover, Thomas L. Murnan, Orville Dodd
  • Patent number: 9768328
    Abstract: A transparent electro-conductive laminate comprising: a substrate film made of a polyimide; and a thin film made of an electro-conductive material and stacked on the substrate film, wherein the polyimide is a polyimide containing at least one repeating unit represented by the following general formula (1): [in the formula (1), R1, R2, and R3 each independently represent one selected from the group consisting of a hydrogen atom, alkyl groups having 1 to 10 carbon atoms, and a fluorine atom, R4 represents an aryl group having 6 to 40 carbon atoms, and n represents an integer of 0 to 12], having a glass transition temperature of 350° C. to 450° C., and having a linear expansion coefficient of 30 ppm/° C. or less, the linear expansion coefficient being determined by measuring change in length under a nitrogen atmosphere and under a condition of a rate of temperature rise of 5° C./minute in a temperature range from 50° C. to 200° C.
    Type: Grant
    Filed: August 3, 2012
    Date of Patent: September 19, 2017
    Assignee: JX NIPPON OIL & ENERGY CORPORATION
    Inventors: Shinichi Komatsu, Akira Shiibashi, Rieko Fujishiro, Ryuichi Ueno, Takaya Matsumoto
  • Patent number: 9741886
    Abstract: A flexible, CPV array having high incident light conversion efficiency, the CPV array comprising: a reflective surface; a plurality of photovoltaic cells configurable to collect radiation from the reflective surface; a concentrating lens (optics) configurable to concentrate the incident light onto the reflective surface and onto the plurality of photovoltaic cells; and a conductor adapted to conduct electricity and heat from the plurality of photovoltaic cells, wherein the CPV array is exposed to incident solar radiation to generate electricity without an incident solar tracking mechanism.
    Type: Grant
    Filed: January 24, 2013
    Date of Patent: August 22, 2017
    Inventors: Ron Helfan, Slava Hasin
  • Patent number: 9728702
    Abstract: A system and method for power delivery through a barrier may include a source for directing thermal energy through a first side of a barrier of sufficient intensity to raise the temperature of at least a region of the barrier and propagate therethrough to a second side thereof, and a thermoelectric generator positioned adjacent the second side of the barrier proximate the region to receive the thermal energy from the source and convert the thermal energy into electricity. A method for delivering power through a barrier may include directing thermal energy upon a first side of a barrier, the thermal energy being of sufficient intensity to raise a temperature of at least a region of the barrier and propagate therethrough to a second side thereof, receiving the thermal energy from the source through the barrier adjacent the second side, and converting the thermal energy to electricity adjacent the second side.
    Type: Grant
    Filed: August 28, 2012
    Date of Patent: August 8, 2017
    Assignee: The Boeing Company
    Inventor: Nathan D. Hiller
  • Patent number: 9728665
    Abstract: A luminescent concentrator for solar light is provided. The luminescent concentrator comprises a wavelength-selective filter, an energy concentrating area, and a luminescent material. The wavelength-selective filter is adapted to pass the solar light and to reflect light emitted by the luminescent material. Further, a method for concentrating solar light is provided. The method comprises the steps of (a) passing incident solar light through a wavelength-selective filter and an energy concentrating area onto a luminescent material, and (b) converting the incident solar light in the luminescent material to light having a wavelength reflectable by the wavelength-selective filter. The method further comprises a step (c) of concentrating the converted light in a pre-determined area arranged between the wavelength-selective filter and the luminescent material.
    Type: Grant
    Filed: August 19, 2010
    Date of Patent: August 8, 2017
    Assignee: PHILIPS LIGHTING HOLDING B.V.
    Inventors: Cornelis Reinder Ronda, Dirk Kornelis Gerhardus De Boer
  • Patent number: 9722116
    Abstract: Disclosed is a solar cell apparatus. The solar cell apparatus includes a solar cell panel; a protective substrate formed on the solar cell panel such that a step difference is formed between the protective substrate and the solar cell panel; and a sealing member at a lateral side of the solar cell panel and on a bottom surface of the protective substrate.
    Type: Grant
    Filed: November 29, 2012
    Date of Patent: August 1, 2017
    Assignee: LG INNOTEK CO., LTD.
    Inventors: Do Won Bae, Se Han Kwon
  • Patent number: 9722131
    Abstract: A highly doped layer for interconnecting tunnel junctions in multijunction solar cells is presented. The highly doped layer is a delta doped layer in one or both layers of a tunnel diode junction used to connect two or more p-on-n or n-on-p solar cells in a multijunction solar cell. A delta doped layer is made by interrupting the epitaxial growth of one of the layers of the tunnel diode, depositing a delta dopant at a concentration substantially greater than the concentration used in growing the layer of the tunnel diode, and then continuing to epitaxially grow the remaining tunnel diode.
    Type: Grant
    Filed: March 16, 2009
    Date of Patent: August 1, 2017
    Assignee: THE BOEING COMPANY
    Inventor: Christopher M. Fetzer