Patents Examined by Matthew Nguyen
  • Patent number: 10090761
    Abstract: A power conversion apparatus includes a first semiconductor element pair that includes a MOSFET made of wide bandgap semiconductor material and a wide bandgap diode made of wide bandgap semiconductor material which is reverse parallel-connected to the MOSFET, a second semiconductor element pair that includes an IGBT made of silicon semiconductor material and a silicon diode made of silicon semiconductor material which is reverse parallel-connected to the IGBT, and a control circuit section for controlling switching operation of the MOSFET and the IGBT. The first and second semiconductor element pairs are connected in series to each other.
    Type: Grant
    Filed: April 18, 2017
    Date of Patent: October 2, 2018
    Assignee: DENSO CORPORATION
    Inventors: Hiroshi Shimizu, Mitsunori Kimura, Kengo Mochiki, Yuu Yamahira, Tetsuya Matsuoka, Kazuma Fukushima, Yasuyuki Ohkouchi
  • Patent number: 10079552
    Abstract: A power conversion device including: a first capacitor and a second capacitor which are connected to each other in series; a plurality of first power semiconductor modules having terminals disposed on one surface; a plurality of second power semiconductor modules having terminals disposed on one surface; and a laminated bus bar connecting the first capacitor and the second capacitor and the plurality of modules, wherein the first power semiconductor modules and the second power semiconductor modules are disposed in such a manner that their respective output terminals face each other in a disposition direction of the terminals, and in the laminated bus bar, an output bus bar connecting the output terminals of the first power semiconductor modules and the second power semiconductor modules to each other is held in an insulated manner in an opening portion provided to the intermediate bus bar.
    Type: Grant
    Filed: October 23, 2017
    Date of Patent: September 18, 2018
    Assignee: FUJI ELECTRIC CO., LTD.
    Inventor: Yasunobu Kadota
  • Patent number: 10075056
    Abstract: A method for power conversion includes coupling a first string to a second string via a first connecting node and a second connecting node to form at least one leg of a power converter. The first string is operatively coupled across a first bus and a second bus and comprises a first branch and a second branch coupled via a third connecting node. The first branch and the second branch include a plurality of controllable semiconductor switches. Furthermore, the second string comprises a first chain link and a second chain link coupled via an alternating current phase bus and includes a plurality of switching units. The first chain link and/or the second chain link are controlled to generate a negative voltage across at least one of the plurality of controllable semiconductor switches during a switch turn off process.
    Type: Grant
    Filed: March 19, 2014
    Date of Patent: September 11, 2018
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Di Zhang, Luis Jose Garces, Andrew Allen Rockhill
  • Patent number: 10074978
    Abstract: A method for controlling a modular converter connected to an electrical grid for active power filtering the electrical grid to compensate for a load connected to the electrical grid, comprises: receiving an actual load current and an actual converter state of the modular converter; determining, from the actual load current and a history of previous load currents, a sequence of future load currents over a prediction horizon; predicting a sequence of future converter states of the modular converter and a sequence of manipulated variables for the modular converter over the prediction horizon by solving an optimization problem based on the actual converter state and the future load currents by minimizing an objective function mapping control objectives to a scalar performance index subject to the dynamical evolution of a prediction model of the modular converter and subject to constraints; and applying a next switching state, which is determined from a first element of the sequence of manipulated variables, to th
    Type: Grant
    Filed: January 23, 2017
    Date of Patent: September 11, 2018
    Assignee: ABB Schweiz AG
    Inventors: Tobias Geyer, Wim Van-Der-Merwe, Vedrana Spudic, Georgios Darivianakis
  • Patent number: 10076060
    Abstract: The disclosure relates to a cooling device, in particular for cooling components that are housed in a switchgear cabinet, comprising a first cooling fan for blowing air from the switchgear cabinet through a first heat exchanger, and a second cooling fan for blowing ambient air through a second heat exchanger, characterized in that the cooling device further comprises a voltage supply having a step-up and/or step-down converter, which is connected via a rectifier to a wide-range input for single-phase or multiphase AC voltage, and which charges a capacitor to a DC link voltage which is higher or lower than a mains voltage across the wide-range input, a power supply unit of at least one of the two cooling fans being connected in parallel to the capacitor. The disclosure further relates to the use of such a cooling device and to a corresponding method for operating the cooling device.
    Type: Grant
    Filed: June 5, 2015
    Date of Patent: September 11, 2018
    Assignee: RITTAL GMBH & CO. KG
    Inventors: Juan Carlos Cacho Alonso, Thorsten Heimberg, Jörg Knetsch, Daniel Rosenthal
  • Patent number: 10069436
    Abstract: A rectifier (107) includes a rectifying MOSFET (101) that performs synchronous rectification, a control circuit (106) that inputs a voltage across a pair of a positive-side main terminal TK and a negative-side main terminal TA of the rectifying MOSFET (101) to determine an ON or OFF state of the rectifying MOSFET (101) based on the inputted voltage, and a capacitor (104) that supplies power to the control circuit (106). The control circuit (106) includes a blocking circuit (105) that inputs the voltage across the pair of main terminals of the rectifying MOSFET (101), to block power supply to the control circuit (106) when the inputted voltage across the pair of main terminals is higher than or equal to a first voltage, and to unblock power supply to the control circuit (106) when the inputted voltage across the pair of main terminals is lower than the first voltage.
    Type: Grant
    Filed: September 30, 2015
    Date of Patent: September 4, 2018
    Assignee: Hitachi Power Semiconductor Device, Ltd.
    Inventors: Tetsuya Ishimaru, Kohhei Onda, Shinichi Kurita, Shigeru Sugayama
  • Patent number: 10063137
    Abstract: The present disclosure relates a reactive power compensation system including a detection unit for acquiring loading state information of a plurality of loads, a reactive power compensation unit for compensating reactive power, and a controller for controlling the reactive power compensation unit to perform flicker compensation or power factor compensation based on a control signal according to the loading state information.
    Type: Grant
    Filed: May 3, 2017
    Date of Patent: August 28, 2018
    Assignee: LSIS CO., LTD.
    Inventor: Yong-Kil Choi
  • Patent number: 10063162
    Abstract: Multi-level inverter introducing a new topology wherein standard IGBTs can be employed in place of common emitter IGBTs, wherein switching and conduction losses are minimized and wherein the number of implemented levels can be easily increased with the addition of a minimum number of components.
    Type: Grant
    Filed: May 16, 2014
    Date of Patent: August 28, 2018
    Assignee: ABB Schweiz AG
    Inventors: David Martini, Fabio Tombelli
  • Patent number: 10063159
    Abstract: A synchronous rectifier controller for controlling the on and off periods of a synchronous rectifier switch transistor in a switching power converter. In particular, the synchronous rectifier controller is configured to adaptively enable and disable a deglitch filter for filtering a turn-on signal for the synchronous rectifier switch transistor. In this fashion, the synchronous rectifier switch transistor may be switched on more rapidly during periods when the deglitch filter is disabled for greater efficiency yet the switching power converter is protected by the deglitch filter when it is not disabled.
    Type: Grant
    Filed: June 30, 2017
    Date of Patent: August 28, 2018
    Assignee: DIALOG SEMICONDUCTOR INC.
    Inventors: Pengju Kong, Tao Li, Hien Bui, Wenbo Liang, Hanguang Zhang
  • Patent number: 10054970
    Abstract: A voltage regulator which provides an output current at an output voltage at an output node, based on an input voltage at an input node is described. The voltage regulator has an output amplification stage comprising a pass transistor for deriving the output current at the output node from the input voltage at the input node; and comprising a driver stage to set a gate voltage at a gate of the pass transistor based on a drive voltage. A gain of the output amplification stage is adjustable. Furthermore, the voltage regulator comprises a differential amplification unit to determine the drive voltage in dependence of the output voltage and in dependence of a reference voltage. In addition, the voltage regulator comprises a gain control circuit to adjust the gain of the output amplification stage in dependence of the output current.
    Type: Grant
    Filed: October 10, 2016
    Date of Patent: August 21, 2018
    Assignee: Dialog Semiconductor (UK) Limited
    Inventors: Ambreesh Bhattad, Frank Kronmueller
  • Patent number: 10050803
    Abstract: A method for providing USB power including the steps of running a POE cable from a power source to an adapter, the adapter having a POE connector for receiving electrical power from the power lines of the POE cable, a transformer circuit and a USB connector where the data lines of the POE cable terminate prior to the data lines reaching the USB connector and the power lines of the POE cable provide power to the USB powered device, adapting the POE power from the POE cable to USB power and making the USB power available to the USB connector.
    Type: Grant
    Filed: July 28, 2017
    Date of Patent: August 14, 2018
    Assignee: FSR, Inc.
    Inventor: Joseph W. Fischer
  • Patent number: 10050516
    Abstract: An ACF power converter uses a soft start operation to reduce overheating and stress on components. The power converter includes a first transistor and second transistor. A high side driver controls the first transistor, and low side driver controls the second transistor. A first operating potential is provided to the low side driver during a first period of time. The second transistor switches based on an oscillator signal having a first rate of frequency change to generate a second operating potential for the high side driver, while attempting to hold the first transistor in the non-conductive state during a second time period. The first and second transistors switch based on the oscillator signal having a second rate of frequency change during a third time period. The power converter is held in ACF mode and inhibited from changing state for a period of time post soft start.
    Type: Grant
    Filed: September 15, 2016
    Date of Patent: August 14, 2018
    Assignee: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventors: Bryan Wayne McCoy, Ajay Karthik Hari
  • Patent number: 10050517
    Abstract: A power supply apparatus of the present invention has an input terminal and an output terminal, and converts an input voltage at the input terminal into a predetermined output voltage at the output terminal. The power supply apparatus includes first and second power supply circuits and a smoothing capacitor. The first power supply circuit is coupled between the input terminal and the output terminal, and converts the input voltage into a predetermined voltage to output the predetermined voltage. The smoothing capacitor is coupled to the output terminal. The second power supply circuit outputs a predetermined voltage or current to the output terminal via the smoothing capacitor, based on a feedback signal corresponding to the predetermined output voltage.
    Type: Grant
    Filed: January 31, 2017
    Date of Patent: August 14, 2018
    Assignee: RICOH ELECTRONICS DEVICES CO., LTD.
    Inventors: Yuuta Ogino, Shohtaroh Sohma
  • Patent number: 10044255
    Abstract: A multi-phase power supply circuit includes at least a first phase and a second phase (such as semi-resonant DC-DC power converter circuits), each of which output current to power a load. The first phase includes a first inductor device through which first current is delivered to the load. The second phase includes a second inductor device through which second current is delivered to the load. A current monitor circuit of the multi-phase power supply circuit is operable to monitor current through the second inductor device. Control circuitry of the multi-phase power supply circuit is operable to adjust timing of activating a control switch in the second phase to an ON state based on the monitored current. Timing of the phases is adjusted to achieve a common switching and zero current switching amongst the phases.
    Type: Grant
    Filed: October 27, 2016
    Date of Patent: August 7, 2018
    Assignee: Infineon Technologies Austria AG
    Inventors: Venkat Sreenivas, Amir Babazadeh
  • Patent number: 10038366
    Abstract: A rectification circuit rectifies an alternating current voltage of an alternating current power supply. A parallel converter comprises converters that correspond to phases and that are connected in parallel to an output terminal of the rectification circuit. Each converter comprising a reactor, a switching circuit that is connected in series to the reactor and a diode that is connected in series to the reactor. A smoothing capacitor is connected to an output terminal of the parallel converter. A control circuit generates pulse signals corresponding to phases based on an error voltage between an output voltage of the smoothing capacitor and a reference voltage and on an output voltage of the rectification circuit, and switches the switching circuits in the converters using the pulse signals. Current detection circuits are provided corresponding to the converters and that detect currents flowing through the switching circuits.
    Type: Grant
    Filed: July 12, 2017
    Date of Patent: July 31, 2018
    Assignee: SANKEN ELECTRIC CO., LTD.
    Inventor: Hiromitsu Terui
  • Patent number: 10038392
    Abstract: An inverter includes: a first transistor (Q1) connected between a first input terminal (T1) and an output terminal (T4); a second transistor (Q2) connected between the output terminal (T4) and a second input terminal (T2); first and second diodes (D1, D2) connected in anti-parallel to the first and second transistors (Q1, Q2), respectively; and a bidirectional switch that is connected between a third input terminal (T3) and the output terminal (T4) and that includes third and fourth transistors (Q3, Q4) and third and fourth diodes (D3, D4). The first and second transistors (Q1, Q2) and the third and fourth diodes (D3, D4) are each formed of a wide band gap semiconductor. The third and fourth transistors (Q3, Q4) and the first and second diodes (D1, D2) are each formed of a semiconductor other than the wide band gap semiconductor.
    Type: Grant
    Filed: August 29, 2014
    Date of Patent: July 31, 2018
    Assignees: TOSHIBA MITSUBISHI-ELECTRIC INDUSTRIAL SYSTEMS CORPORATION, Mitsubishi Electric Corporation
    Inventors: Keisuke Ohnishi, Masahiro Kinoshita, Kimiyuki Koyanagi
  • Patent number: 10038368
    Abstract: PFC device and controlling method thereof, and an electronic device are provided. The device includes: first and second input terminals configured to receive AC input signal including alternating positive and negative half-cycles; an output terminal configured to provide output signal; an inductor a first terminal of which is coupled with the first input terminal; a first bridge arm including first and second switch components whose first connection point is coupled with second terminal of the inductor; a second bridge arm including third and fourth switch components whose second connection point is coupled with the second input terminal; a first current sampling unit configured to sample falling edge of an inductor current flowing through the inductor; a switch controlling unit configured to generate switch control signal based on sampling result to control the first and second switch components to change switch status. Influence of parasitic parameters on the circuit is reduce.
    Type: Grant
    Filed: August 21, 2017
    Date of Patent: July 31, 2018
    Assignee: MURATA MANUFACTURING CO., LTD.
    Inventors: Chun Mei, Zhou Chen, Fangshun Zhu
  • Patent number: 10025334
    Abstract: An electronic circuit includes a voltage regulator and an undershoot reduction circuit. The undershoot reduction circuit is configured to receive an indication of an event that potentially causes an undershoot in an output of the voltage regulator, and, in response to the indication, to generate and couple to the output of the voltage regulator a pulse that reduces the undershoot.
    Type: Grant
    Filed: December 29, 2016
    Date of Patent: July 17, 2018
    Assignee: NUVOTON TECHNOLOGY CORPORATION
    Inventor: Itai Derman
  • Patent number: 10020722
    Abstract: A circuit includes a signal generator to generate an output signal to vary the switching frequency of a switching circuit to mitigate noise in the switching circuit. The signal generator includes a modulation waveform generator (MWG) to generate a ramp signal in response to a numerical input and a switching signal from the switching circuit. The ramp signal is employed to modulate the frequency of the output signal of the signal generator over a range of frequencies from a minimum frequency to a maximum frequency. A frequency adjuster circuit modulates the amplitude of the ramp signal by adjusting at least one of the minimum frequency or the maximum frequency of the range of frequencies.
    Type: Grant
    Filed: October 14, 2016
    Date of Patent: July 10, 2018
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Christian Harder, Markus Georg Rommel, Stefan Reithmaier
  • Patent number: 10014774
    Abstract: One example includes a switching power supply. The switching power supply includes a power stage, a feedback loop, and a simulated feedback error generator. The power stage provides an output signal in response to a switching signal. The feedback loop monitors the output signal and provides a feedback error signal to adjust the switching signal to regulate the output signal. The simulated feedback error generator temporarily provides a simulated feedback error signal during a transition period from the low power mode to a high power mode of the switching power supply until the feedback loop has enough time to provide the feedback error signal.
    Type: Grant
    Filed: October 18, 2016
    Date of Patent: July 3, 2018
    Assignee: Texas Instruments Incorporated
    Inventors: Gangqiang Zhang, Vaibhav Garg, Xiaochun Zhao, Angelo W. D. Pereira, Vijayalakshmi Devarajan