Patents Examined by Maureen M. Wallenhorst
  • Patent number: 7977105
    Abstract: Disclosed is a method for diagnosing myocardial infarction in a subject who suffers from acute coronary syndrome and has a cardiac troponin level, which is detectable, but lower than the level that is considered as being indicative for a myocardial infarction. Also disclosed is a method for identifying a subject being susceptible to cardiac intervention, wherein the subject suffers from acute coronary syndrome and has a cardiac troponin level which is detectable, but lower than a level that is considered as being indicative for a myocardial infarction. These methods are based on the determination of myoglobin and, optionally, Heart-type fatty acid binding protein (H-FABP) in a sample of the subject and comparing the amount of myoglobin and, optionally, H-FABP to reference amounts. Also disclosed are kits or devices to carry out the methods.
    Type: Grant
    Filed: March 9, 2010
    Date of Patent: July 12, 2011
    Assignee: Roche Diagnostics Operations, Inc.
    Inventors: Georg Hess, Hendrik Huedig, Rosemarie Kientsch-Engel, Dietmar Zdunek
  • Patent number: 7972861
    Abstract: Methods and devices for performing in situ hematocrit adjustments during glucose testing using glucose-monitoring products and using those adjusted values to estimate the hematocrit value of blood samples to reduce or eliminate the assay bias caused by the different hematocrit levels of blood samples. One method involves measuring the glucose value, Glum, of the blood sample; measuring the resistance of the blood sample (Rcell) using a biosensor reagent; measuring the resistance of plasma (Rplasma) using the biosensor reagent; determining the calculated resistance of red blood cells, RRBC, of the blood sample according to the relationship RRBC=Rcell?Rplasma; calculating the percent hematocrit, % Hctc, of the blood sample; determining whether to adjust the glucose value, Glum, to an adjusted glucose value, Gluadj; and using the percent hematocrit, % Hctc, and either the glucose value, Glum, or the adjusted glucose value, Gluadj, to adjust for any bias of the biosensor reagent.
    Type: Grant
    Filed: May 13, 2005
    Date of Patent: July 5, 2011
    Assignee: Bayer Healthcare LLC
    Inventors: Yingping Deng, Sherry J. Jamison
  • Patent number: 7968347
    Abstract: An example method for detecting an analyte in a sample of a bodily fluid comprises the steps of exposing the bodily fluid sample to electromagnetic energy to cause a thermoelastic expansion in the analyte, and detecting a photoacoustic signal in the sample that results from the thermoelastic expansion.
    Type: Grant
    Filed: July 11, 2007
    Date of Patent: June 28, 2011
    Assignee: The Curators of the University of Missouri
    Inventors: John A. Viator, Paul S. Dale, Ryan M. Weight, Peter Sutovsky
  • Patent number: 7960177
    Abstract: A standard calibration set having at least three calibration standards. Each standard is a molded article made of a thermoplastic polymer which contains the elements Cd, Cr, Pb, Hg and Br, with the Cr:Pb:Hg:Br:Cd ratio being different in each of the three calibration standards. Further disclosed is a method for manufacturing the calibration standards and their use in X-ray fluorescence analysis.
    Type: Grant
    Filed: November 10, 2006
    Date of Patent: June 14, 2011
    Assignee: Fachhochschule Münster
    Inventors: Martin Kreyenschmidt, Christian Mans, Stephanie Hanning
  • Patent number: 7955854
    Abstract: Disclosed are a method, device, and test kit for diagnosing heart failure in a patient exhibiting atrial fibrillation. The method includes determining an amount of growth differentiation factor-15 (GDF -15) in a sample from the patient and comparing the amount of GDF-15 determined with a reference amount of GDF-15, wherein when the amount of GDF-15 determined is greater than the reference amount of GDF-15, a diagnosis of heart failure is indicated.
    Type: Grant
    Filed: November 19, 2009
    Date of Patent: June 7, 2011
    Assignee: Roche Diagnostics Operations, Inc.
    Inventors: Georg Hess, Andrea Horsch, Hendrik Huedig, Dietmar Zdunek
  • Patent number: 7951606
    Abstract: A bilirubin sensor has a working electrode with a first chemical matrix disposed thereon that contains a binder, a substrate electrode with a second chemical matrix dispose thereon that contains a binder and a chemical agent that consumes bilirubin, a reference electrode, a sample chamber containing the working electrode, the substrate electrode and the reference electrode, and a method of measuring bilirubin in a body fluid.
    Type: Grant
    Filed: May 24, 2010
    Date of Patent: May 31, 2011
    Assignee: Nova Biomedical Corporation
    Inventors: Jianhong Pei, Mary M. Lauro, Chung Chang Young
  • Patent number: 7951598
    Abstract: The invention relates to a method for differentially hemolyzing whole blood. It discloses methods for detecting an analyte in a liquid sample known or suspected to contain red blood cells and suspected or known to contain eukaryotic cells, the method including the steps of processing the liquid sample with a membrane solubilizing agent under conditions appropriate to lyse cell membranes of red blood cells and at the same time not to cause precipitation of sample constituents, subjecting the processed sample to a chromatographic separation, and detecting the analyte. The differential hemolysis of red blood cells is of advantage in a method of detecting an analyte in a liquid sample that may contain both erythrocytes and nucleated cells. The differential solubilization of red blood cells can be easily combined with an online detection methodology, like LC-MS, and is advantageous in the detection of many analytes, e.g. in the detection of folate or of immunosuppressive drugs, like tacrolimus or sirolimus.
    Type: Grant
    Filed: December 5, 2008
    Date of Patent: May 31, 2011
    Assignee: Roche Diagnostics Operations, Inc.
    Inventors: Uwe Kobold, Thomas Duelffer, Rupert Herrmann, Herbert von der Eltz
  • Patent number: 7951599
    Abstract: A method for determining the hematocrit of a blood sample is provided that includes the steps of: 1) depositing the sample into an analysis chamber operable to quiescently hold the sample for analysis, the chamber defined by the interior surfaces of first and second panels and a height extending there between, wherein both panels are transparent, and the height is such that at least some of the red blood cells within the sample contact both interior surfaces of the panels and one or more lacunae within the quiescent sample extend between the interior surfaces; 2) imaging at least a portion of the quiescent sample, which sample portion contains the red blood cells and one or more lacunae to determine an optical density of the imaged portion of the sample on a per image unit basis; 3) selecting and averaging the optical density values of the image units aligned with the red blood cells contacting the interior surfaces, and assigning an upper boundary value of 100% to the average optical density value of those i
    Type: Grant
    Filed: March 20, 2009
    Date of Patent: May 31, 2011
    Assignee: Abbott Point of Care, Inc.
    Inventors: Robert A. Levine, Stephen C. Wardlaw, Darryn W. Unfricht, Niten V. Lalpuria
  • Patent number: 7947504
    Abstract: The determination (test, diagnosis) of pancreatic cancer can be performed with high accuracy by detecting a fucosylated sugar chain (N-glycan) present in a specific site of the human haptoglobin and using an amount of the fucosylated sugar chain as a tumor marker for pancreatic cancer.
    Type: Grant
    Filed: May 29, 2008
    Date of Patent: May 24, 2011
    Assignee: Wako Pure Chemical Industries Ltd.
    Inventors: Eiji Miyoshi, Naoyuki Taniguchi, Miyako Nakano
  • Patent number: 7947502
    Abstract: The invention is directed to a method and a kit for calibrating a photoluminescence measurement system, in particular a fluorescence measurement system. The kit includes a number of fluorescence standards i and their corrected and certified fluorescence spectra Ii(?), whereby the fluorescence standards i are selected, so that their spectrally corrected fluorescence spectra Ii(?) cover a broad spectral range with high intensity. The standards are characterized by large half-widths FWHMi of their bands of at least 1400 cm?1. According to the method of the invention, partial correction functions Fi(?) are generated by forming the quotient of the measured fluorescence spectra Ji(?) and the corresponding corrected fluorescence spectra Ii(?), which are then combined to form a total correction function F(?) for a broad spectral range.
    Type: Grant
    Filed: March 23, 2010
    Date of Patent: May 24, 2011
    Assignees: Sigma-Aldrich GmbH, BAM Bundesanstalt für Materialforschung und-prüefung
    Inventors: Ute Resch-Genger, Dietmar Pfeifer, Christian Monte, Angelika Hoffmann, Pierre Nording, Bernhard Schönenberger, Katrin Hoffmann, Monika Spieles, Knut Rurack
  • Patent number: 7947505
    Abstract: The present invention provides a method for testing quickly and easily the manner in which an antithrombotic agent inhibits the acceleration of blood coagulation when a platelet agonist causes acceleration of blood coagulation. The invention is a test method wherein a system in which an anticoagulant is added to a portion of blood sampled from a patient being administered an antithrombotic agent (X system blood), and a system in which an anticoagulant and adenosine diphosphate or collagen are added to a portion of the abovementioned blood (Y system blood) are simultaneously measured by thromboelastograph; and the efficacy of the antithrombotic agent is assessed by comparing the R values of the X system blood and the Y system blood. If the R value of the Y system blood is not found to differ significantly from the R value of the X system blood, the drug is judged to be working. Adenosine diphosphate and collagen can be used as the anticoagulant.
    Type: Grant
    Filed: November 8, 2005
    Date of Patent: May 24, 2011
    Inventors: Jun Kawasaki, Kenichi Tanaka
  • Patent number: 7943384
    Abstract: A flow cytometry system and method for sorting a mixture of particles with a fluid delivery system delivering a fluid containing particles, a flow cytometry apparatus for receiving the fluid, forming the fluid into a stream and using flow cytometry to classify the particles according to certain characteristics; a sorting system for sorting the particles according to the classification and according to a sorting strategy to provide at least one population containing desired particles and; a control responsive to information received from the flow cytometry apparatus for controlling the sorting system to vary its sorting strategy or for controlling the fluid delivery system to vary the rate at which fluid is delivered as a function at least one of purity and quantity of the particles.
    Type: Grant
    Filed: June 7, 2010
    Date of Patent: May 17, 2011
    Assignee: Inguran LLC
    Inventors: Gary Durack, Jeffrey D. Wallace, Gary P. Vandre, Lon A. Westfall, Jeremy T. Hatcher, Niraj V. Nayak
  • Patent number: 7943386
    Abstract: An apparatus for determining the volume fractions of the phases in a suspension includes a body, a channel structure, which is formed in the body, and an inlet area and a blind channel, which is fluidically connected to and capable of being filled via the same. Furthermore, a drive for imparting the body with rotation, so that phase separation of the suspension in the blind channel takes place, is provided. The blind channel includes such a channel cross-section and/or such wetting properties that, when filling same via the inlet area, higher capillary forces act in a first cross-sectional area than in a second cross-sectional area, so that at first the first cross-sectional area fills in the direction from the inlet area toward the blind end of the blind channel and then the second cross-sectional area fills in the direction from the blind end toward the inlet area.
    Type: Grant
    Filed: October 5, 2006
    Date of Patent: May 17, 2011
    Assignee: Albert-Ludwigs-Universitaet Freiburg
    Inventors: Markus Grumann, Jens Ducrée, Roland Zengerle, Lutz Riegger
  • Patent number: 7943382
    Abstract: For a method for inspecting in vivo migration of fat soluble vitamins and/or fat soluble food factors in the ingestion of a drug or a health supplement, it is necessary to use saliva as a specimen, to contact a saliva collecting tool with a certain amount of saliva to absorb for collection, and to select a solvent for efficiently extracting a measurement target component from the saliva collecting tool. Accordingly, there are provided a method for inspecting in vivo migration of fat soluble vitamins and/or fat soluble food factors in the ingestion of a drug or a health supplement, by using saliva as a specimen to determine; the property of a saliva collecting tool; and a method for extracting from the saliva collecting tool.
    Type: Grant
    Filed: March 3, 2005
    Date of Patent: May 17, 2011
    Assignee: Mitsubishi Chemical Medience Corporation
    Inventors: Kyouichi Sekine, Tatsuo Uetake
  • Patent number: 7939329
    Abstract: A hemostasis analyzer, such as the Thrombelastograph® (TEG®) hemostasis analyzer is utilized to measure continuously in real time, the hemostasis process from the initial fibrin formation, through platelet-fibrin interaction and lysis to generate blood hemostasis parameters. The measured blood hemostasis parameters permit preparation of an individualized assessment of ischemic event risk and individualized treatment of a subject.
    Type: Grant
    Filed: October 26, 2009
    Date of Patent: May 10, 2011
    Assignee: Cora Healthcare, Inc.
    Inventor: Eli Cohen
  • Patent number: 7932089
    Abstract: A simulant material for simulating hazardous materials is provided. The simulant material includes a quantity of at least one explosive material and at least one inert material. The simulant material is a non-explosive material and is in the form of a homogenous, flexible and non-particulated material. Also provided is a method for manufacturing such a simulant material.
    Type: Grant
    Filed: August 8, 2005
    Date of Patent: April 26, 2011
    Assignee: Rafael Armament Development Authority Ltd.
    Inventors: Yael Cohen-Arazi, Tamar Kaully, Edith Sokol, Aviv Nisan
  • Patent number: 7927878
    Abstract: The invention describes a process for the determination of the concentration distribution and size distribution of lipoprotein classes in body fluids, e.g. blood. For this purpose, NMR spectra of a sample to be analysed are measured by magnetic field gradient intensities and temperatures under different diffusion-weighted measuring conditions selected according to different pulse programs (e.g. PFG-STE, PFG-LED etc) and consequently in a differentiated manner according to the relaxation times. The different effects of these measuring conditions on the intensity/line form of the NMR signals of the individual lipoprotein classes are determined and permit the determination of a concentration distribution/size distribution of the individual lipoprotein classes.
    Type: Grant
    Filed: June 1, 2005
    Date of Patent: April 19, 2011
    Assignee: LipoFIT Analytic GmbH
    Inventors: Werner Kremer, Hans Robert Kalbitzer, Fritz Huber
  • Patent number: 7927882
    Abstract: A method and apparatus for performing a first measurement on a biological fluid or control, which first measurement varies with both the concentration of a first component and at least one of the presence and concentration of a second component. The method and apparatus perform a second measurement on the biological fluid or control, which second measurement varies primarily only with the at least one of the presence and concentration of the second component to develop an indication of the at least one of the presence and concentration of the second component. The first and second measurements may be made sequentially or simultaneously. The method and apparatus then remove an amount representative of the indicated presence or concentration of the second component from the concentration of the first component indicated by the first measurement.
    Type: Grant
    Filed: August 8, 2005
    Date of Patent: April 19, 2011
    Assignee: Roche Diagnostics Operations, Inc.
    Inventor: Zindel Herbert Heller
  • Patent number: 7923253
    Abstract: A method and system for classifying subject populations utilizing predictive and diagnostic biomarkers for type I diabetes mellitus. The method including determining the levels of a variety of markers within the serum or plasma of a target organism and correlating this level to general populations as a screen for predisposition or progressive monitoring of disease presence or predisposition.
    Type: Grant
    Filed: November 5, 2008
    Date of Patent: April 12, 2011
    Assignee: Battelle Memorial Institute
    Inventors: Thomas O Metz, Weijun Qian, Jon M. Jacobs, David G. Camp, II, Richard D. Smith
  • Patent number: 7923258
    Abstract: A method and apparatus for performing a first measurement on a biological fluid or control, which first measurement varies with both the concentration of a first component and at least one of the presence and concentration of a second component. The method and apparatus perform a second measurement on the biological fluid or control, which second measurement varies primarily only with the at least one of the presence and concentration of the second component to develop an indication of the at least one of the presence and concentration of the second component. The first and second measurements may be made sequentially or simultaneously. The method and apparatus then remove an amount representative of the indicated presence or concentration of the second component from the concentration of the first component indicated by the first measurement.
    Type: Grant
    Filed: August 4, 2008
    Date of Patent: April 12, 2011
    Assignee: Roche Diagnostics Operations, Inc.
    Inventor: Zindel Herbert Heller