Patents Examined by Melvyn J. Andrews
  • Patent number: 5425799
    Abstract: Refractory gold ores are roasted at temperatures from 500.degree. to 650.degree. C. in an oxidizing atmosphere in a fluidized bed, which is supplied with a carbonaceous additional fuel. To effect a substantially complete combustion of the additional fuel to form CO.sub.2 and H.sub.2 O, methanol is added as a carbonaceous fuel.
    Type: Grant
    Filed: May 2, 1994
    Date of Patent: June 20, 1995
    Assignee: Metallgesellschaft Aktiengesellschaft
    Inventors: Walter Koch, Bodo Peinemann
  • Patent number: 5425813
    Abstract: A web cleaning apparatus and method for cleaning the surface of a web (22), for example a photographic film. The apparatus has a rotatable particle transfer roller (10) for removing particulate contamination from the web and a rotatable renewal roller (30) having a cleaning surface (36) for contacting and cleaning the particle transfer roller. Wiping contact is established between the particle transfer roller and the renewal roller to effectuate cleaning of the transfer roller. An absorbent cleaning member (46) is positioned in a cleaning fluid reservoir (32) for wetting and cleaning the cleaning surface of the renewal roller.
    Type: Grant
    Filed: February 22, 1994
    Date of Patent: June 20, 1995
    Assignee: Eastman Kodak Company
    Inventors: Gerard W. Ernst, Gregory P. Guyette
  • Patent number: 5425798
    Abstract: A non-amalgamated zinc alloy powder for use in an alkaline cell which consists of elements selected from the following compositions (1) to (4);(1) 0.001 to 0.5% by weight of aluminum and 0.01 to 0.5% by weight of bismuth,(2) 0.001 to 0.5% by weight of aluminum, 0.01 to 0.5% by weight of bismuth and indium in an amount greater than zero and up to 1.0% by weight,(3) 0.001 to 0.5% by weight of aluminum, 0.01 to 0.5% by weight of bismuth and lithium in an amount greater than zero and up to 0.5% by weight,(4) 0.001 to 0.5% by weight of aluminum, 0.01 to 0.5% by weight of bismuth, indium in an amount greater than zero and up to 1.0% by weight and calcium or lithium in an amount greater than zero and up to 0.5% by weight;and the balance being zinc and containing iron as an inevitably accidental impurity in an amount of not more than 1 ppm; and which can greatly suppress the evolution of hydrogen gas and maintain the discharge performance on a practical level:and a method to produce the same.
    Type: Grant
    Filed: July 21, 1993
    Date of Patent: June 20, 1995
    Assignees: Mitsui Mining & Smelting Co., Ltd., Matsushita Electric Industrial Co., Ltd.
    Inventors: Masamoto Sasaki, Tomotaka Motomura, Hirofumi Asano
  • Patent number: 5424031
    Abstract: The present invention relates to a method for grain refining of aluminium and aluminium alloys wherein a siliconboron alloy containing between 0.01 to 4.0% by weight of boron is added to molten aluminium or aluminium alloy in such an amount that the resulting melt of aluminium or aluminium alloy contains at least 50 ppm boron. The invention further relates to a grain refining alloy for aluminium and aluminium alloys which grain refining alloy is a siliconboron alloy containing between 0.01 and 4.0% by weight of boron.
    Type: Grant
    Filed: August 18, 1993
    Date of Patent: June 13, 1995
    Assignee: Elkem Aluminium ANS
    Inventors: Lars Arnberg, Gunnar Halvorsen, Per Arne Tondel
  • Patent number: 5423900
    Abstract: The invention relates to a method for blowing oxidizing gases into molten metal located in a reaction vessel having tuyeres below the metal bath surface, whereby the oxidizing gases are blown into the molten metal from these tuyeres and fed to the tuyeres at an inlet pressure between 85 bars and 170 bars.
    Type: Grant
    Filed: October 19, 1993
    Date of Patent: June 13, 1995
    Assignee: KCT Technologie GmbH
    Inventors: Klaus Klintworth, Rainer Zechner, Rudolf Flesch, Manfred Redetzky, Harald Berger, Johannes Steins
  • Patent number: 5423921
    Abstract: The invention relates to an apparatus for cleaning textiles by means of FCHC-free solvents on a benzine basis, comprising a cleaning machine, distillation section, recovery section and drier, and is characterized by a means for injecting protective gas into the drier.
    Type: Grant
    Filed: July 7, 1993
    Date of Patent: June 13, 1995
    Inventors: Hans-Udo Saal, Ralf M. Saal
  • Patent number: 5421856
    Abstract: Dross formation in the aluminum melting and/or refining is avoided partially or totally by the method of this invention. The method is useful in unmodified open top furnaces. The elimination or reduction of dross formation is carried out throughout the body of molten aluminum by the installation of gas injection devices to extend through the refractory lining in the bottom of the furnace. For longer life without clogging metal cased refractories of the directional porosity type are used for gas injection. Mixtures of inert and hydrocarbon gases are used with respective proportions chosen to match the design parameters of different types of furnaces. In operation the dross is eliminated by reactions of the injected gases with the impurities of the molten aluminum batch at its hottest temperatures in the body of the aluminum mass to thereby reduce dross generally caused by oxidation of the molten aluminum within the molten mass.
    Type: Grant
    Filed: March 28, 1994
    Date of Patent: June 6, 1995
    Inventor: Arturo Lazcano-Navarro
  • Patent number: 5421911
    Abstract: The present invention provides a steel composition and method for producing a high quality regular grain oriented electrical steel having less than 0.005% aluminum using a single cold reduction step. A high austenite volume fraction, the use of an annealing separator coating with high sulfur or a sulfur bearing atmosphere to provide strong surface energy grain growth, a quench after initial annealing to provide the optimum microstructure having a small amount of martensite with a fine carbide dispersion and various chemistry changes are included in the method. Excess manganese in combination with tin, which has been found to act similarly to excess Mn, are maintained at a total level less than 0.03%. The use of chromium in an amount ranging from 0.11% to 1.2% provides outstanding control of stability for secondary grain growth.
    Type: Grant
    Filed: November 22, 1993
    Date of Patent: June 6, 1995
    Assignee: Armco Inc.
    Inventor: Jerry W. Schoen
  • Patent number: 5422066
    Abstract: Aluminum-base alloys in a peak-aged condition and magnesium-base alloys in the form of cast products and wrought products capable of having improved combinations of yield strength and fracture toughness are disclosed. The aluminum-base alloy products are comprised of 0.5 to 4.5 wt %. lithium, about 0.01 to 1 ppm Na, about 0.01 to 1 ppm K, less than 0.1 ppm Rb, less than 0.1 ppm Cs, and the remainder comprising aluminum. Aluminum-base alloy products in a peak-aged condition have: (i) a grain boundary region substantially free of liquid phase eutectics comprised of Na and K that form embrittlement phases at room temperature; and (ii) an increase in fracture toughness compared to an aluminum-lithium alloy having greater than 5 ppm aggregate alkali metal.
    Type: Grant
    Filed: June 14, 1993
    Date of Patent: June 6, 1995
    Assignee: Comalco Aluminium Limited
    Inventor: Donald Webster
  • Patent number: 5421850
    Abstract: A method and apparatus for treating non-ferrous metal drosses in order to recover the free metal contained therein. The dross is heated by a plasma torch in a rotary furnace, preferably to a temperature above 800.degree. C. The plasma heating and rotary motion make it possible to recover metal from the dross without employing the conventional salt bath. This means that the gases exiting the furnace can be treated more easily to remove pollutants and the solid residues can be discarded without risk of causing environmental pollution. By controlling the speed of rotation of the furnace, large dross lumps can be accommodated and so the conventional grinding and screening procedure of the dross can advantageously be eliminated.
    Type: Grant
    Filed: April 28, 1993
    Date of Patent: June 6, 1995
    Assignee: Alcan International Limited
    Inventors: Ghyslain Dube, Jean-Paul Huni, Serge Lavoie, Wesley D. Stevens
  • Patent number: 5417739
    Abstract: A method of making stabilized ultra-low carbon steel having a high nitrogen content for enameling applications. The preferred method involves two phases. The first phase occurs in the basic oxygen furnace wherein nitrogen gas is combined with oxygen gas and blown into the melt through the oxygen lance. After the oxygen blow the carbon content of the melt is approximately 0.03% and the nitrogen content is at least about 0.016 to 0.020%. In the second phase the melt is introduced to a vacuum circulation decarburizer where the carbon content of the steel is reduced to ultra low levels on the order of 0.005%. The nitrogen content is maintained at a level of at least about 0.01% by introducing nitrogen gas into the vacuum decarburization vessel as the lift gas through inert gas tuyeres.
    Type: Grant
    Filed: December 30, 1993
    Date of Patent: May 23, 1995
    Assignee: LTV Steel Company, Inc.
    Inventors: Richard R. Watkins, Robert Blossey, Gregory Wotell
  • Patent number: 5417738
    Abstract: A method for recovering useful metal included in slag generated from steel-making process in a convertor. The method comprises the steps of atomizing the slag in water, screening the atomized slag so as to be classified by sizes, dropping the classified slag of similar sizes into a flow of blowing air to sort it into a high-weight group and a low-weight group, and transferring the high-weight group into a furnace to recovering useful metal therefrom. The useful metal can be recovered at a low cost. In addition, since the inventive method does not accompany with the pulverization, polluting factor such as noise and dust is eliminated and thus, the working conditions become more comfortable. Moreover, the inventive method is advantageous in a view of reuse because the low-weight slag is used as useful materials such as short balls, grits, fluxes and aggregates.
    Type: Grant
    Filed: December 22, 1993
    Date of Patent: May 23, 1995
    Assignee: Ok-Soo Oh
    Inventors: Ok-Soo Oh, Won-Dae Cho, Eun-Soo Oh
  • Patent number: 5417782
    Abstract: A nickel-based superalloy known by the designation "718" and having a typical composition comprising, in percentages by weight, Cr 19, Fe 18, Nb 5, and the remainder Ni, is subjected, after the usual thermo-mechanical and heat treatment steps, to an additional annealing step wherein the temperature and duration are selected from the following range as desired:800.degree. C. for between 5 and 30 hours;750.degree. C. for between 25 and 70 hours; and700.degree. C. for between 100 and 300 hours.This leads to a definite improvement in the behaviour of parts made from the superalloy, in terms of fatigue cracking, when used at temperatures over 650.degree. C.
    Type: Grant
    Filed: June 3, 1993
    Date of Patent: May 23, 1995
    Assignee: Societe Nationale d'Etude et de Construction de Moteurs d'Aviation "SNECMA"
    Inventor: Jean-Marc Rongvaux
  • Patent number: 5417919
    Abstract: There is provided an aluminum alloy sheet material having high strength as well as excellent formability, which consists essentially, by weight percent, of 4.5 to 6% Mg, 0.0005 to 1% rare earth elements, 0.001 to 0.15% Ti, 0.0001 to 0.004% B, 0.05 to 0.2% Fe, 0.05 to 0.1% Si, 0.0001 to 0.03% Be, and the balance of Al and inevitable impurities. The aluminum alloy sheet material may further contain at least one element selected from the group consisting of 0.05 to 0.3% Cu, 0.1 to 1% Zn and 0.05 to 0.2% Mn, if required.
    Type: Grant
    Filed: August 20, 1993
    Date of Patent: May 23, 1995
    Assignee: Mitsubishi Aluminum Co., Ltd.
    Inventors: Koichi Ohori, Yoshinobu Komiyama, Hiroshi Saitoh, Masahiko Miyazaki
  • Patent number: 5417769
    Abstract: An automated open topped apparatus and improved method for cleaning soil from metal parts which employs a low vapor tension, low density, LVTC, liquid cleaner in a first tank and a high vapor tension, higher density, immiscible rinse, HVTR, liquid in a second tank and a rinse vapor zone above both tanks in the apparatus which provides steps and means for preventing rinse vapor loss during shut down periods by using microprocessor controlled steps that cause a layer of the liquid cleaner to be positioned atop and cover the liquid rinse in its tank and at the end of the idle period returns the liquid cleaner cover to the first tank and re-starts the cleaning process and thereafter monitors and controls cleaning operation until the succeeding shut down period.
    Type: Grant
    Filed: January 28, 1994
    Date of Patent: May 23, 1995
    Assignee: Detrex Corporation
    Inventors: Donald R. Gerard, William J. Hook, Charles A. Pennington, Robert J. Richardson, II
  • Patent number: 5415382
    Abstract: A method and apparatus is provided for temporarily retaining slag and nonmetallic particles in a tundish while molten metal is being transferred through the tundish to other desired vessels. In particular, a meltable dam is placed into an opening between the chambers in a tundish, and the meltable dam retains an accumulation of molten metal in the pour chamber of the tundish with the slag and nonmetallic particles floating on top of that level such that the slag and nonmetallic particles are above the opening between the chambers of the tundish. The dam then completely melts and allows the transfer of molten metal through the opening. The slag and nonmetallic particles are retained in the pour chamber, however, because the molten metal being transferred into the pour chamber maintains the level in that chamber above the opening until almost all of the metal has been transferred into and through the chamber.
    Type: Grant
    Filed: December 20, 1993
    Date of Patent: May 16, 1995
    Assignee: Allegheny Ludlum Corporation
    Inventor: James D. Calos
  • Patent number: 5415710
    Abstract: The aluminum alloy of the invention has excellent fatigue strength, high rigidity, and low thermal expansion coefficient, and is suitable for rotating components such as conrods in an internal combustion engine. The aluminum alloy is an Al-Si alloy which contains 7.0-12.0% wt. Si, 3.0-6.0 % wt. Cu, 0.20-1.0% wt. Mg, 0.30-1.5% wt. Mn, 0.40-2.0% wt. Ti+V, 0.05-0.5% wt. Zr, and the remainder Al and being inevitable impurities and which contains a dispersed intermetallic compound of average particle size of 0.5 m or less and containing Ti, V, and Zr. The alloy is preferably manufactured by the rapidly solidifying powder metallurgy process, or by the spray-forming process. By selecting a work-hardening exponent of 0.20 or less, the thread rolling workability is improved.
    Type: Grant
    Filed: February 15, 1994
    Date of Patent: May 16, 1995
    Assignees: Honda Motor Co., Ltd., Sumitomo Light Metal Industries, Ltd.
    Inventors: Haruo Shiina, Fumito Usuzaka, Yoshimasa Ohkubo, Shinichi Tani
  • Patent number: 5415680
    Abstract: Disclosed is a method and apparatus of treating molten metal for reducing the amount of gaseous or volatile material contained therein. The method comprises providing a body of molten metal and contacting the molten metal with a porous member having a porous surface resistant to penetration with the molten metal. The porous member is subjected to reduced pressure to impose a reduced pressure zone on the molten metal contacting the porous surface thereby removing the gaseous material from the molten metal through the porous member.
    Type: Grant
    Filed: November 9, 1992
    Date of Patent: May 16, 1995
    Inventor: C. Edward Eckert
  • Patent number: 5413622
    Abstract: A method is provided to improve the production of hot direct reduced iron in a melter-gasifier; reduction furnace system. All of the reduction gas produced in the melter gasifier and the top gas produced in reduction furnace which has been stripped of CO.sub.2 are recycled to the reduction furnace. The reduction furnace is sized to process all this gas and bypassed direct reduced iron may result.
    Type: Grant
    Filed: December 16, 1993
    Date of Patent: May 9, 1995
    Assignee: Bechtel Group, Inc.
    Inventor: Richard B. Greenwalt
  • Patent number: 5413621
    Abstract: The present invention pertains to a process for cooling and purifying hot, dust-laden flue gases enriched with dioxins and other toxic components from a melting vessel, e.g., an arc furnace.Both the flue gases A, B generated during charging and those generated during the melting operation are collected, and the toxic components are removed in two ways.The flue gases A collected in the exhaust hoods 2 are fed into the filter 6, while previously blowing an additive 12, on which the toxic components settle before reaching the filter bags, into the flue gas stream A.The hot flue gases B drawn off directly from the arc furnace 1 are introduced into a combustion chamber 3 after passing through a water-cooled section 4, and are subjected to afterburning in the combustion chamber 3 to remove the toxic pollutants. These gases are then intermediately cooled in a second, water-cooled section 5, further cooled by adding more additional cold air A, and fed into the filter 7.
    Type: Grant
    Filed: June 25, 1993
    Date of Patent: May 9, 1995
    Assignee: Man Gutehoffnungshutte Aktiengesellschaft
    Inventors: Winfried Hogner, Hans Piechura