Patents Examined by Michael G. Mendoza
  • Patent number: 10758386
    Abstract: Some implementations of an endovascular device include a stent graft with an expandable tubular metallic frame and a covering material disposed on at least a portion of the metallic frame. The stent graft defines a lumen therethrough. In a particular embodiment, a first balloon is disposed around an outer periphery of the stent graft, a second balloon is disposed around the outer periphery of the stent graft and spaced apart from the first balloon, and a third balloon is disposed within the stent graft lumen between the first balloon and the second balloon. The third balloon can be inflated to fully or partially occlude the lumen. The first and second balloons can be individually inflated to fully or partially shunt blood flow from a blood vessel through the stent graft. In some embodiments, sensors and an automated control unit are included to automate the operations of the endovascular device.
    Type: Grant
    Filed: March 10, 2016
    Date of Patent: September 1, 2020
    Assignee: Board of Regents of the University of Nebraska
    Inventors: Jason N. MacTaggart, Alexey Kamenskiy
  • Patent number: 10744014
    Abstract: A stent delivery device includes a shaft with an internal lumen and a balloon connected to the shaft. The stent delivery device includes a cover configured to advance or retract in the axial direction of the shaft between a covering position where the cover covers the deflated balloon and a retracted position where the cover is spaced apart from the balloon. The stent delivery device includes a drive unit configured to apply a driving force for advancing or retracting the cover. The lumen of the shaft is configured to allow a working fluid to flow through the lumen to inflate the balloon. The balloon and drive unit are operated by the injecting and discharging of the working fluid. The inflation and deflation of the balloon and the advancing and retracting of the cover are performed in conjunction with each other.
    Type: Grant
    Filed: August 21, 2017
    Date of Patent: August 18, 2020
    Assignee: TERUMO KABUSHIKI KAISHA
    Inventors: Takashi Kumazawa, Kazuyoshi Tani
  • Patent number: 10736626
    Abstract: A tissue clip for adjoining tissues including a body portion, a biasing mechanism interconnecting the body portion to a tissue grasping mechanism, the grasping mechanism having a first condition wherein the grasping mechanism is extending against and away from the body portion and a second condition wherein the grasping mechanism is biased against the body portion. A tissue clip and deployer combination. A method of interconnecting tissue by deploying the tissue clip, puncturing tissue to be interconnected with the tissue clip, and interconnecting the tissue. A method of treating an aneurism by deploying the tissue clip at an aneurism site, closing off the aneurism site with the tissue clip, and treating the aneurism. A method of imaging a surgical procedure with ultrasound by modifying a surface of a metal surgical instrument, and imaging the metal surgical instrument with ultrasound during a surgical procedure.
    Type: Grant
    Filed: April 8, 2016
    Date of Patent: August 11, 2020
    Assignee: Children's Medical Center Corporation
    Inventors: Pedro J. del Nido, Nikolay V. Vasilyev, Franz Freudenthal
  • Patent number: 10729570
    Abstract: A medical lumen-expansion balloon may include a generally cylindrical central body between first and second body end portions, a low-profile unexpanded first state and a radially-expanded second state, wherein the first body end portion is constrained by fiber material such that it will not expand longitudinally and circumferentially beyond a predetermined size, and the central body is constrained by fiber material so as to be circumferentially substantially noncompliant, but is longitudinally compliant, such that it will elongate with increased volume but will not substantially radially expand.
    Type: Grant
    Filed: September 4, 2014
    Date of Patent: August 4, 2020
    Inventors: Timothy A. M. Chuter, John Luke Chuter
  • Patent number: 10722257
    Abstract: Devices for removing clot material from a blood vessel lumen and associated systems and methods are disclosed herein. A clot retrieving device may include, for example, an elongated shaft, a capture structure having a proximal region coupled to the distal zone of the elongated shaft, a cover, and a connector coupling the cover to the distal zone of the elongated shaft. The device may further include a jacket at least partially over the proximal terminus of the connector and a portion of the filaments protruding from the connector.
    Type: Grant
    Filed: May 12, 2017
    Date of Patent: July 28, 2020
    Assignee: COVIDIEN LP
    Inventors: Erik Skillrud, Daniel Deen, Evan Epstein
  • Patent number: 10709464
    Abstract: Devices for removing clot material from a blood vessel lumen and associated systems and methods are disclosed herein. A clot retrieving device may include, for example, an elongated shaft, a capture structure having a proximal portion and a distal portion, and a cover having a first portion coupled to the elongated shaft and a second portion extending from the first portion. The cover may have an inverted configuration in which the capture structure is at least partially ensheathed within the first portion of the cover and the second portion of the cover extends distally from the first portion. In the inverted configuration, the second portion may have (a) a first region distal to a distal terminus of the capture structure, the first region tapering radially inwardly in a distal direction, and (b) a second region extending distally and radially outwardly from the first region.
    Type: Grant
    Filed: May 12, 2017
    Date of Patent: July 14, 2020
    Assignee: COVIDIEN LP
    Inventors: Daniel Deen, Erik Skillrud, Evan Epstein
  • Patent number: 10687938
    Abstract: Docking devices can be configured to be positioned at a native valve of a human heart to provide structural support for docking a prosthetic valve. The docking devices generally have coiled structures that define an inner space in which the prosthetic valve can be held. Some docking devices can be adjusted from a first wider configuration which facilitates easier advancement of the docking device around the valve anatomy, to a second narrower configuration after the docking device has been delivered to more securely hold the prosthetic valve. The docking device may also be better held in position at the native valve after adjustment to the narrower configuration. Some docking devices include a stabilization segment or double coil configuration, where a main coil region is configured to securely hold a prosthetic valve, while a stabilization coil region is configured to more stably hold the docking device at the native valve.
    Type: Grant
    Filed: August 23, 2017
    Date of Patent: June 23, 2020
    Assignee: Edwards Lifesciences Corporation
    Inventors: Darshin S. Patel, Hernan Altman, Boaz Manash, Tamir S. Levi, Dinesh L. Sirimanne
  • Patent number: 10682128
    Abstract: A vascular closure device includes a deployment assembly, a sealing unit carried by the deployment assembly, and a tamper carried by the deployment assembly and that is disposed along a suture with respect to the sealing unit. The vascular closure device includes a locking assembly coupled to the tamper so as to selectively inhibit advancement of the tamper along the suture in the distal direction toward the sealing unit. The locking assembly is adapted to transition from A) a locked configuration where the tamper is inhibited from sliding along the suture, into B) an unlocked configuration where the tamper is slidable along the suture in the distal direction and into contact with the sealing unit.
    Type: Grant
    Filed: August 8, 2017
    Date of Patent: June 16, 2020
    Assignee: Arrow International, Inc.
    Inventors: Greg A. Walters, Joseph Todd Grintz
  • Patent number: 10682126
    Abstract: A phantom to determine navigational error in a surgical navigation system that tracks the location of an elongate tool having a tip and a shaft based on a plurality of fiducials attached to the elongate tool. The phantom includes a base portion that models a lower portion of a mammalian head and having a top surface with a plurality of touch points, each of the touch points being a respective indentation, and a frame detachably securable to the base portion and having an upper portion spaced apart from the top surface, the upper portion having defined therein a plurality of apertures. A tip of the elongate tool is to be inserted through said one of the apertures and in one of the touch points, and the surgical navigation system determines positional and angular error.
    Type: Grant
    Filed: May 11, 2016
    Date of Patent: June 16, 2020
    Assignee: Synaptive Medical (Barbados) Inc.
    Inventors: Aisha Sial, Katlin Jean Kreamer-Tonin, Rajkumar Venkatesalu, Sean Jy-Shyang Chen
  • Patent number: 10667835
    Abstract: An apparatus comprises a body assembly, a shaft, an acoustic waveguide, an articulation section, an end effector, and an articulation drive assembly. The shaft extends distally from the body assembly and defines a longitudinal axis. The acoustic waveguide comprises a flexible portion. The articulation section is coupled with the shaft. A portion of the articulation section encompasses the flexible portion of the waveguide. The articulation section comprises a plurality of body portions aligned along the longitudinal axis and a flexible locking member. The flexible locking member is operable to secure the body portions in relation to each other and in relation to the shaft. The end effector comprises an ultrasonic blade in acoustic communication with the waveguide. The articulation drive assembly is operable to drive articulation of the articulation section to thereby deflect the end effector from the longitudinal axis.
    Type: Grant
    Filed: April 16, 2015
    Date of Patent: June 2, 2020
    Assignee: Ethicon LLC
    Inventors: William B. Weisenburgh, II, Barry C. Worrell, David A. Monroe, Jeffrey L. Aldridge, Benjamin D. Dickerson, Craig N. Faller, William D. Fox, Michael J. Stokes
  • Patent number: 10661060
    Abstract: A method is disclosed for selective inflation of an inflatable body, such as a balloon, received through an oral cavity and into the esophagus of a patient. The inflatable body is operably coupled to a pressurized fluid source. The inflatable body has a relatively flexible portion and a relatively inflexible portion. When pressurized fluid is delivered to the body to inflate the body, the flexible portion expands more than the inflexible portion, resulting in asymmetrical expansion and movement of the esophagus away from the ablation site to avoid accidental injury while performing a procedure on the patient's left atrium. This movement may be opposite from or directly away from the heart or, alternatively, may be sideways relative to the heart to a location in which the esophagus is interposed between the ablation site and the phrenic nerve.
    Type: Grant
    Filed: October 18, 2017
    Date of Patent: May 26, 2020
    Assignee: Niazi Licensing Corporation
    Inventor: Imran K. Niazi
  • Patent number: 10639023
    Abstract: A method and apparatus for securing soft tissue to bone can include loading a suture through an eyelet of a suture anchor. The suture anchor can have a longitudinal axis and a distal tip. An anchor inserter assembly can be positioned in contact with the suture anchor. The anchor inserter assembly can include a sleeve portion and an impacting portion. The suture can be engaged with a suture engaging member on the suture inserter assembly at a location adjacent to the eyelet. The sleeve portion can be translated relative to the impacting portion from an alignment position to an insertion position thereby moving the suture a first distance offset from the eyelet in a direction away from the distal tip. The anchor insert assembly can be advanced to a driven position thereby advancing the suture anchor into the bone. The suture engaging member can be released from the suture.
    Type: Grant
    Filed: December 9, 2016
    Date of Patent: May 5, 2020
    Assignee: Biomet Sports Medicine, LLC
    Inventors: Brian K. Berelsman, Kevin T. Stone
  • Patent number: 10624784
    Abstract: The present invention is directed to an apparatus and method for assisted removal of the cortex, capsule polishing and destruction and/or removal of other intraocular structures. More particularly, the present invention is directed to a surgical apparatus configurable for removal of the cortex and the polishing of the capsule during cataract extraction surgery.
    Type: Grant
    Filed: April 17, 2015
    Date of Patent: April 21, 2020
    Inventor: Liviu B. Saimovici
  • Patent number: 10610295
    Abstract: Medical methods and devices for treating aortic dissections. A catheter-based cutting device permits cutting a septum of acute or chronic aortic dissections, in a retrograde manner. The catheter includes a base section having a central lumen therethrough and two flexible arms extending from a distal end thereof. The flexible arms can each have a guide wire channel therethrough. With distal ends of the two flexible arms separated, the two arms form a Y-shape with the base section. In one embodiment, with distal ends of the two flexible arms together, the two arms have a longitudinal profile, about a periphery thereof, identical to a longitudinal profile of the base section. A cutting component resides between the two arms. The cutting component can face distally outward between the two arms with the distal ends of the two flexible arms separated.
    Type: Grant
    Filed: May 23, 2017
    Date of Patent: April 7, 2020
    Inventors: Ramon Berguer, Juan Parodi
  • Patent number: 10576252
    Abstract: An introducer apparatus includes an outer sleeve and an inner cannula received within the lumen of the outer sleeve. The outer sleeve has a profile such that at least a portion of the distal end of the outer sleeve tapers in the distal direction at an angle not exceeding about 2° relative to a longitudinal axis of the apparatus. The distal open end of the outer sleeve has a wall thickness not exceeding about 0.003 inch. The inner cannula includes a tapered distal end portion. The tapered distal portion of the inner cannula extends distal to the distal open end of the outer sleeve, such that a generally smooth diametrical transition is provided between the outer sleeve tapered portion and the open distal end of the inner cannula.
    Type: Grant
    Filed: September 29, 2017
    Date of Patent: March 3, 2020
    Assignee: Cook Medical Technologies LLC
    Inventor: Arman H. Valaie
  • Patent number: 10561470
    Abstract: Methods, apparatus, and systems for controlling a plurality of manipulator assemblies of a robotic system. In accordance with a method, a first plurality of sensor signals are received at a plurality of joint space interface elements from a plurality of connector input elements via a first mapping between the joint space interface elements and joints of the first manipulator assembly. The connector input elements are operable to couple to only one manipulator assembly at a time. The received first sensor signals are then processed with a joint controller so as to control the first manipulator assembly. A second plurality of sensor signals are then received from the connector input elements at the joint space interface elements via a second mapping different than the first mapping. The received second sensor signals are then processed with the joint controller so as to control a second manipulator assembly different than the first manipulator assembly.
    Type: Grant
    Filed: March 18, 2014
    Date of Patent: February 18, 2020
    Assignee: INTUITIVE SURGICAL OPERATIONS, INC.
    Inventors: Arjang M. Hourtash, Nicola Diolaiti, Pushkar Hingwe, Niels Smaby, Nitish Swarup
  • Patent number: 10561509
    Abstract: A self-expanding braided stent includes at least a distal radial expansion ring added to a distal end of the stent body to increase a radial expansion force of the self-expanding braided stent in deployment of the stent, and to facilitate advancement of the stent through a delivery sheath by a core advancement wire. A proximal radial expansion ring is optionally added to a proximal end of the stent body to allow the stent to be recaptured following partial deployment by retraction of the core advancement wire, prior to full deployment of a proximal portion of the stent body.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: February 18, 2020
    Assignee: DEPUY SYNTHES PRODUCTS, INC.
    Inventors: Robert Slazas, Ramin Tehrani
  • Patent number: 10537418
    Abstract: A catheter compiling a housing portion defining an interior cavity and the housing portion comprising a housing member having an interior space dimensioned for housing an indwelling medical device. The elongated member comprises a lumen extending at least from an exit port to a distal port, the housing member is disposed within the lumen, and the lumen is dimensioned in the housing portion to receive a guidewire outside of the interior space of the housing member. A medical device for filtering emboli from blood flowing in a blood vessel of patient comprising an elongate support member and an elongate side branch member connected to the elongate support member. The filter element is attached to the elongate side branch member by a proximal filter element slider, and the elongate side branch member is adapted to maintain the filter element centered in the vessel.
    Type: Grant
    Filed: August 31, 2016
    Date of Patent: January 21, 2020
    Assignee: Covidien LP
    Inventors: Cathleen von Lehe, Sengkham Sirivong
  • Patent number: 10532207
    Abstract: An extractor for removing an implanted lead from a patient, the extractor comprising a proximal portion, a distal portion, a lumen dimensioned to receive the lead therein, a cutter at the distal portion for cutting tissue adjacent the implanted lead, and a first clamping member movable between a clamping position to clamp the lead and an unclamping position to unclamp the lead. The extractor and lead are relatively movable to remove the lead.
    Type: Grant
    Filed: July 20, 2017
    Date of Patent: January 14, 2020
    Assignee: Talpanetics BV
    Inventors: Menno Kalmann, Wieger Kaptein, Amit Ben Dror
  • Patent number: 10524910
    Abstract: A rod (508) is transfemorally advanceable to the heart. An implant (460) comprises (i) a first frame (462), compressed around a first longitudinal site of a distal portion of the rod, (ii) a second frame (464), compressed around a third longitudinal site of the distal portion, (iii) a valve member (50), disposed within the second frame, and (iv) a flexible sheet (466), coupling the first frame to the second frame, and disposed around a second longitudinal site of the distal portion, the second longitudinal site being between the first longitudinal site and the third longitudinal site. An extracorporeal controller (569) is coupled to a proximal portion of the rod, and is operably coupled to the distal portion of the rod. Operating the controller bends the distal portion of the rod causing articulation between the frames. Other embodiments are also described.
    Type: Grant
    Filed: July 30, 2015
    Date of Patent: January 7, 2020
    Assignee: MITRALTECH LTD. 3 ARIEL SHARON AVENUE
    Inventors: Tal Hammer, Meni Iamberger, Yaron Herman, Yuval Zipory, Eran Hoffer, Michael Albitov, Natalia Kruglova, Tal Reich, Ilia Hariton, Aviram Baum