Patents Examined by Michael J Lau
  • Patent number: 11350867
    Abstract: Systems and methods for quantifying cardiac electrophysiologic signals. An electronic processor receives a unipolar electrogram signal from each of a plurality of electrodes positioned at different locations of a heart. The electronic processor then calculates or measures a bipolar electrogram signal based on a difference between the unipolar electrogram signal for a first electrode and the unipolar electrogram signal for a second electrode. A local activation time (LAT) difference between a location of the first electrode and a local of the second electrode is then determined based on a voltage amplitude of the bipolar electrogram signal. The LAT difference is indicative of an amount of time between a local activation of a propagating wavefront at the location of the first electrode and a local activation of the propagating wavefront at the location of the second electrode.
    Type: Grant
    Filed: April 29, 2019
    Date of Patent: June 7, 2022
    Assignee: Duke University
    Inventor: Stephen Gaeta
  • Patent number: 11344742
    Abstract: A system and method are disclosed that use a flexible guide (flap) and a scanning method to control the delivery of light dose to a treatment area. This approach overcomes the non-reliable delivery of light dose with a flap that conforms to the target area. Dosimetry control can be improved through the use of a computer controlled motor to move the laser fibers at known speed over the target tissue. In some embodiments, treatment time is reduced and illumination of large surfaces is achieved by using multiple fibers to deliver the light simultaneously.
    Type: Grant
    Filed: July 25, 2016
    Date of Patent: May 31, 2022
    Assignee: Health Research, Inc.
    Inventors: Gal Shafirstein, Brian Wrazen, David A. Bellnier, Todd Demmy
  • Patent number: 11338143
    Abstract: A stimulation control unit that outputs a stimulation signal for reducing a myocardial workload to an electrode for stimulation inserted in a blood vessel running in the vicinity of the vagus nerve of a patient in order to stimulate the vagus nerve; a detecting unit that detects first biological information and second biological information of the patient; a setting unit that sets threshold information for determining a normal range of the first biological information and second biological information; and a determining unit that determines whether or not values of the detected first biological information and second biological information are within the normal range determined in the threshold information; where the stimulation control unit adjusts the intensity of the stimulation signal such that the values of the first biological information and second biological information are within the normal range, and the value of the second biological information is reduced by a predetermined ratio or more as compar
    Type: Grant
    Filed: March 20, 2019
    Date of Patent: May 24, 2022
    Assignee: Neuroceuticals, Inc.
    Inventors: Kenji Sunagawa, Shinya Miike, Keita Saku
  • Patent number: 11318305
    Abstract: An adaptive control method for controlling EP pulse parameters during electroporation (EP) of cells or tissue using an EP system includes providing a system for adaptive control to optimize EP pulse parameters including EP pulse parameters, applying voltage and current excitation signals to the cells, obtaining data from the current and voltage measurements, and processing the data to separate the desirable data from the undesirable data, extracting relevant features from the desirable data, applying at least a portion of the relevant features to a trained diagnostic model, estimating EP pulsing parameters based on an outcome of the applied relevant features, where the initialized EP pulsing parameters are based on the trained model and the relevant features, to optimize the EP pulsing parameters, and applying, by the generator, a first EP pulse based on the first pulsing parameters.
    Type: Grant
    Filed: March 31, 2016
    Date of Patent: May 3, 2022
    Assignee: ONCOSEC MEDICAL INCORPORATED
    Inventors: Arya Bahrami, Douglas W. Brown, Jean Campbell, Richard J. Connolly, Andy E. Denison, Christopher S. Hayden, Eric T. Johnson, Robert H. Pierce, Robert R. Ragland
  • Patent number: 11304617
    Abstract: Some embodiments of the present disclosure relate to electronic technologies, and provide a detection circuit. According to embodiments of the present disclosure, the detection circuit includes a first load module, a second load module, a third load module, a first detection module, a second detection module, and an obtaining module. A first end of the first detection module is connected to a junction between a first detection electrode and the first load module, a second end of the first detection module is connected to the obtaining module, a first end of the second detection module is connected to a junction between a second detection electrode and the second load module, and a second end of the second detection module is connected to the obtaining module.
    Type: Grant
    Filed: December 31, 2020
    Date of Patent: April 19, 2022
    Assignee: Shenzhen Goodix Technology Co., Ltd.
    Inventors: Chenyang Kong, Si Herng Ng
  • Patent number: 11291832
    Abstract: Embodiments discussed herein facilitate identification of a target area within a region of a brain for stimulation via one or more BS (Brain Stimulation) electrodes. One example embodiment comprises generating, based on radiological imaging of a region of a brain of a patient and BS electrode lead(s), a patient-specific anatomical model of the region and lead(s); populating the patient-specific anatomical model with neuron models based on associated neuronal densities of at least one of the region or one or more sub-regions of the region; constructing a patient-specific local field potential (LFP) model of the region based on the patient-specific anatomical model and location(s)/orientation(s) of the one or more BS electrode leads; and identifying, via the patient-specific LFP model of the region, a target area within the region for at least one of monitoring or treatment of a medical condition via the one or more BS electrode leads.
    Type: Grant
    Filed: April 29, 2019
    Date of Patent: April 5, 2022
    Assignee: Case Western Reserve University
    Inventors: Cameron McIntyre, Nicholas Maling, Scott Lempka
  • Patent number: 11246669
    Abstract: A system and method for rapid halt and recovery of motion deviations in a medical device includes a computer-assisted medical device having a first repositionable arm having one or more first repositionable elements, a second repositionable arm having one or more second repositionable elements, and a control unit communicably coupled to the first and second repositionable arms. The control unit is configured to control motion of the first repositionable arm and the first end effector based on a desired motion, monitor an actual motion of the first repositionable arm and the first end effector, determine whether the actual motion deviates from the desired motion by more than a predetermined threshold, and halt motion of the first repositionable arm and the first end effector, or of the second repositionable arm and the second end effector, when the actual motion deviates from the desired motion by more than the predetermined threshold.
    Type: Grant
    Filed: December 20, 2016
    Date of Patent: February 15, 2022
    Assignee: INTUITIVE SURGICAL OPERATIONS, INC.
    Inventors: Goran A. Lynch, Paul G. Griffiths, Michael Turner
  • Patent number: 11247068
    Abstract: The invention provides a light therapy device for providing therapeutic treatment to a user's body, wherein the user may be a person or an animal. The device is using a light projection method for treating the body problems and/or skin disorders. Further, the device is having a rotatable assembly that automatically follows the movement of the desired area of the body needs to be treated. The device uses artificial intelligence, machine learning, localization modules, object detection module, image processing module, and 3D-mapping to automatically identify and treating the desired area of the body. Furthermore, the user can manually identify, select and prioritize desired treatment portion and can select the type of treatment required.
    Type: Grant
    Filed: October 2, 2018
    Date of Patent: February 15, 2022
    Assignee: ShenZhen Kaiyan Medical Equipment Co, LTD
    Inventors: Alain Dijkstra, Jonathan James Knight, Jooeun Kim, Yong Zhang, Dan Xu
  • Patent number: 11229500
    Abstract: Systems, methods and devices for delivering stimulating energy with a lead having a directional electrode are disclosed. The lead includes a directional electrode having an electrically active portion configured to emanate stimulating energy from an exposed portion of the directional electrode. The lead also has an electrically insulating portion around at least part of the circumference of the lead. The electrically insulating portion is configured to insulate surrounding muscle and/or tissue from the stimulating energy when the lead is implanted in the patient.
    Type: Grant
    Filed: June 26, 2019
    Date of Patent: January 25, 2022
    Assignee: ATACOR MEDICAL, INC.
    Inventors: Rick Sanghera, Alan Marcovecchio, Sean P. McGeehan
  • Patent number: 11207505
    Abstract: A balloon catheter device with a fluid management system includes a source of balloon fill media and a balloon catheter in fluid communication with the source of balloon fill media. A first conduit is provided for delivering the balloon fill media from the source to the balloon catheter for inflation of a balloon of the catheter device. A second conduit is provided for returning the balloon fill media from the balloon catheter to the source for deflating the balloon. A first pump is disposed along one of the first conduit and the second conduit for pumping the balloon fill media through the respective conduits.
    Type: Grant
    Filed: January 5, 2018
    Date of Patent: December 28, 2021
    Assignee: CARDIOFOCUS, INC.
    Inventors: Gerald Melsky, Brian Estabrook, Lincoln Baxter
  • Patent number: 11191466
    Abstract: Physiological variables, metrics, biomarkers, and other data points can be used, in connection with a non-invasive wearable device, to screen for, and predict, mental health issues and cognitive states. In addition to metrics such as heart rate, sleep data, activity level, gamification data, and the like, information such as text message and email data, as well as vocal data obtained through a phone and/or a microphone, may be analyzed, provided user authorization. Applying predictive modeling, one or more of the monitored metrics can be correlated with mental states and disorders. Identified patterns can be used to update the predictive models, such as via machine learning-trained models, as well as to update individual event predictions. Information about the mental state predictions, and updates thereto, can be surfaced to the user accordingly.
    Type: Grant
    Filed: June 28, 2019
    Date of Patent: December 7, 2021
    Assignee: Fitbit Inc.
    Inventors: Conor Joseph Heneghan, Alexander Statan, Jonathan David Charlesworth
  • Patent number: 11191519
    Abstract: A device, system, and method for volumetric ultrasound imaging is described. The device and system include an array of transducer elements grouped in triangular planar facets and substantially configured in the shape of a hemisphere to form a cup-shaped volumetric imaging region within the cavity of the hemisphere, A plurality of data-acquisition assemblies are connected to the transducers, which are configured to collect ultrasound signals received from the transducers and transmit image data to a network of processors that are configured to construct a volumetric image of an object within the imaging region based on the image data received from the data-acquisition assemblies.
    Type: Grant
    Filed: August 4, 2015
    Date of Patent: December 7, 2021
    Assignee: Habico, Inc.
    Inventors: Robert C. Waag, Jeffrey P. Astheimer
  • Patent number: 11175462
    Abstract: A surgical laser tool comprises an output member that includes an output laser fiber, a probe tip, and electrical contacts. The probe tip is attached to a distal end of the output laser fiber. Electromagnetic energy transmitted through the output laser fiber is discharged through the probe tip. The electrical contacts are supported at a proximal end of the output member.
    Type: Grant
    Filed: September 6, 2012
    Date of Patent: November 16, 2021
    Assignee: Boston Scientific Scimed, Inc.
    Inventors: Wen-Jui Ray Chia, Steven Yihlih Peng
  • Patent number: 11160982
    Abstract: Methods for treating post-traumatic stress disorder (PTSD) and/or for reducing a risk associated with developing PTSD in patients via therapeutic renal neuromodulation and associated systems are disclosed herein. Sympathetic nerve activity can contribute to several cellular and physiological conditions associated with PTSD as well as an increased risk of developing PTSD following a traumatic event. One aspect of the present technology is directed to methods for improving a patient's calculated risk score corresponding to a PTSD status in the patient. Other aspects are directed to reducing a likelihood of developing PTSD in patients presenting one or more PTSD risk factors. Renal sympathetic nerve activity can be attenuated to improve a patient's PTSD status or risk of developing PTSD. The attenuation can be achieved, for example, using an intravascularly positioned catheter carrying a therapeutic assembly configured to use, e.g.
    Type: Grant
    Filed: July 3, 2018
    Date of Patent: November 2, 2021
    Assignee: MEDTRONIC ARDIAN LUXEMBOURG S.A.R.L.
    Inventors: Marcia Gallagher, Douglas Hettrick
  • Patent number: 11154722
    Abstract: A wearable for providing light therapy to a wearer includes at least one fabric panel having an inner surface that when the wearable is worn is configured to face a wearer's skin and an outer surface opposite the inner surface and at least one side-emitting optical fiber affixed to at least one of the inner surface and the outer surface. The side-emitting optical fiber is optically connectable with an optical fiber light source and configured to project light having a therapeutic wavelength toward a wearer of the wearable. When affixed to the fabric panel, the side-emitting optical fiber can have a length in meters no less than the quotient of 0.46 and the average attenuation of the at least one side-emitting optical fiber.
    Type: Grant
    Filed: May 19, 2020
    Date of Patent: October 26, 2021
    Assignee: BIOTHREAD LLC
    Inventors: Daniel Bish, Lawrence A. Blaustein, Jaleh Factor, Boris Kontorovich, Daniel Shuter, Jay Tapper
  • Patent number: 11135438
    Abstract: A system for planning or conducting stimulation includes a display; and a processor that executes instructions configured for: displaying, on the display, a representation of a stimulation effect; obtaining and displaying, on the display, a path for migration of the stimulation effect; receiving a duration or rate for migration of the stimulation effect; and determining a selection of one of more electrodes or optical stimulators for one or more stimulation leads of a stimulation system to produce the stimulation effect and conduct the migration of the stimulation effect along the path according to the duration or rate.
    Type: Grant
    Filed: January 8, 2019
    Date of Patent: October 5, 2021
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Bradley Lawrence Hershey, Tianhe Zhang, Natalie A. Brill, Rosana Esteller, Jianwen Gu
  • Patent number: 11097115
    Abstract: An implantable pulse generator is provided that includes a power source, a wireless communication component configured to facilitate wireless communication with a non-implanted device and pulse-generating circuitry connected to the power source. The pulse-generating circuitry can be configured to identify, based on wireless communication with the non-implanted device, temporal and amplitude characteristics for electrical pulse stimuli and to trigger electrical output stimuli having the temporal and amplitude characteristics. The implantable pulse generation can further include one or more lead connections—each being shaped to engage a lead and electrically connected to the pulse-generating circuitry to enable the lead to deliver at least part of the electrical output stimuli triggered by the pulse-generating circuitry. The implantable pulse generator can further include one or more suture-engagement components, each including one or more holes each having a diameter that is at least 0.1 mm and less than 5 mm.
    Type: Grant
    Filed: September 24, 2018
    Date of Patent: August 24, 2021
    Assignee: Galvani Bioelectronics Limited
    Inventor: Peng Cong
  • Patent number: 11058880
    Abstract: VfA cardiac therapy uses an implantable medical device or system. The implantable medical device includes a tissue-piercing electrode implanted in the basal and/or septal region of the left ventricular myocardium of the patient's heart from the triangle of Koch region of the right atrium through the right atrial endocardium and central fibrous body. The device may include a right atrial electrode, a right atrial motion detector, or both. The device may be implanted completely within the patient's heart or may use one or more leads to implant electrodes in the patient's heart. The device may be used to provide cardiac therapy, including single or multiple chamber pacing, atrioventricular synchronous pacing, asynchronous pacing, triggered pacing, cardiac resynchronization pacing, or tachycardia-related therapy. A separate medical device may be used to provide some functionality for cardiac therapy, such as sensing, pacing, or shock therapy.
    Type: Grant
    Filed: March 22, 2019
    Date of Patent: July 13, 2021
    Assignee: Medtronic, Inc.
    Inventors: Zhongping Yang, Subham Ghosh
  • Patent number: 11058397
    Abstract: A method for quantifying the elasticity of a material by ultrasounds, comprising the generation of one excitation point, for generating a shear wave, a measurement of the shear wave at a plurality of lines of sight placed in a region of interest at different predetermined distances from the first excitation point, the calculation of the speed of the measured shear wave and the assessment, by calculation, of a mean stiffness value of the material in the region of interest on the basis of the measured speed of the shear wave. In the acquired image, a second excitation point is defined, in such a position that the region of interest is interposed between the first excitation point and the second excitation point.
    Type: Grant
    Filed: December 29, 2015
    Date of Patent: July 13, 2021
    Assignee: Esaote S.p.A.
    Inventors: Davide Carlini, Fulvio Biordi
  • Patent number: 11045105
    Abstract: The present disclosure relates to a method for determination of cardiac output or EPBF of a mechanically ventilated subject. The method comprises the steps of introducing a change in the effective ventilation of the subject, measuring expiratory flow and CO2 during a sequence of analyzed breaths during which the effective ventilation of the subject varies, and determining the cardiac output or EPBF of the subject using the flow and CO2 measurements. The method further comprises the steps of measuring also a relative variation in cardiac output or EPBF during the sequence of analyzed breaths, and using the relative variation in the determination of cardiac output or EPBF.
    Type: Grant
    Filed: May 3, 2016
    Date of Patent: June 29, 2021
    Assignee: MAQUET CRITICAL CARE AB
    Inventor: Magnus Hallbäck