Patents Examined by Michael Mooney
  • Patent number: 10007063
    Abstract: In an example embodiment, a WDM array includes an optical filter, N common ports, N reflection ports, and N pass ports. The N common ports may be positioned to a first side of the optical filter. N may be greater than or equal to two. The N reflection ports may be positioned to the first side of the optical filter. The N pass ports may be positioned to a second side of the optical filter opposite the first side.
    Type: Grant
    Filed: February 8, 2017
    Date of Patent: June 26, 2018
    Assignee: FINISAR CORPORATION
    Inventors: Xiaolin Chen, Xucheng Wang, Fan Chen, Steven James Frisken
  • Patent number: 9995894
    Abstract: The method comprises providing a semiconductor substrate, which has a main surface and an opposite further main surface, arranging a contact pad above the further main surface, forming a through-substrate via from the main surface to the further main surface at a distance from the contact pad and, by the same method step together with the through-substrate via, forming a further through-substrate via above the contact pad, arranging a hollow metal via layer in the through-substrate via and, by the same method step together with the metal via layer, arranging a further metal via layer in the further through-substrate via, the further metal via layer contacting the contact pad, and removing a bottom portion of the metal via layer to form an optical via laterally surrounded by the metal via layer.
    Type: Grant
    Filed: October 8, 2014
    Date of Patent: June 12, 2018
    Assignee: ams AG
    Inventors: Jochen Kraft, Karl Rohracher, Jordi Teva
  • Patent number: 9983366
    Abstract: An optical fiber connector includes a housing configured to mate with a receptacle, a collar body that includes a fiber stub and a mechanical splice device, a backbone to retain the collar body within the housing, and a boot. The backbone includes at least one guide channel to facilitate wrapping strength members of an optical fiber cable around the backbone and a cable jacket clamping portion to clamp the cable jacket of the cable. The boot actuates the cable jacket clamping portion of the backbone upon attachment to the backbone.
    Type: Grant
    Filed: October 29, 2015
    Date of Patent: May 29, 2018
    Assignee: 3M Innovative Properties Company
    Inventors: Christine B. Bund, Donald K. Larson, Wesley A. Raider
  • Patent number: 9971111
    Abstract: An optical interconnect structure includes a lens array and a waveguide substrate. The lens array has a dummy lens. The waveguide substrate has a dummy core, a dummy mirror corresponding to the dummy core, and an inspection opening for injecting inspection light into the dummy core to reach the dummy mirror. In the optical interconnect structure, the lens array is mounted on the waveguide substrate such that the dummy lens of the lens array is positioned on the dummy mirror by monitoring inspection light from the inspection opening.
    Type: Grant
    Filed: November 6, 2017
    Date of Patent: May 15, 2018
    Assignee: International Business Machines Corporation
    Inventor: Hsiang Han Hsu
  • Patent number: 9971110
    Abstract: An optical interconnect structure includes a lens array and a waveguide substrate. The lens array has a dummy lens. The waveguide substrate has a dummy core, a dummy mirror corresponding to the dummy core, and an inspection opening for injecting inspection light into the dummy core to reach the dummy mirror. In the optical interconnect structure, the lens array is mounted on the waveguide substrate such that the dummy lens of the lens array is positioned on the dummy mirror by monitoring inspection light from the inspection opening.
    Type: Grant
    Filed: January 6, 2017
    Date of Patent: May 15, 2018
    Assignee: International Business Machines Corporation
    Inventor: Hsiang Han Hsu
  • Patent number: 9952391
    Abstract: An optical transmission module includes a light emitting device for transmitting a first optical signal, a light receiving device for receiving a second optical signal, an optical fiber for guiding a third optical signal in which the first optical signal and the second optical signal are coupled, and an optical waveguide substrate having an optical waveguide made of first resin, wherein a groove formed on the optical waveguide substrate is provided with a prism having the optical fiber and a reflective face through which the first optical signal transmit, a first side face of the prism contacts a first wall face of the groove, and a second side face thereof contacts a second wall face of the groove.
    Type: Grant
    Filed: September 20, 2017
    Date of Patent: April 24, 2018
    Assignee: OLYMPUS CORPORATION
    Inventors: Youhei Sakai, Yusuke Nakagawa
  • Patent number: 9946028
    Abstract: A guide pin wafer may include a base wafer that includes multiple dies. Each die may include a corresponding lens cutout. The guide pin wafer may also include multiple guide pins mounted on the base wafer. Each die of the base wafer may be mounted with two or more corresponding guide pins that may be configured to engage a parallel fiber connector to the corresponding die.
    Type: Grant
    Filed: December 16, 2016
    Date of Patent: April 17, 2018
    Assignee: Finisar Corporation
    Inventors: Jiashu Chen, Steve Macica, Idan Mizrahi
  • Patent number: 9946030
    Abstract: A beam branching device capable of suppressing an increase in the cost and the like even when the number of branching directions of an incident beam is large and increasing the coupling efficiency even when the rotation accuracy of a rotary motor is not increased too high and coping with high-speed switching of the optical path is provided. In a beam branching device, a rotation shaft of a rotary motor is rotated to rotate a rotating member together with a plurality of reflection mirrors so that an incident beam is reflected from a reflection mirror surface portion of any one of the plurality of reflection mirrors and the incident beam is branched to a plurality of directions to switch an optical path of a reflection beam.
    Type: Grant
    Filed: October 18, 2017
    Date of Patent: April 17, 2018
    Assignee: FANUC CORPORATION
    Inventors: Hiroshi Takigawa, Munekazu Matsuda
  • Patent number: 9939709
    Abstract: Disclosed herein is an optical waveguide element that includes a substrate and a waveguide layer formed on the substrate and comprising lithium niobate. The waveguide layer has a slab part having a predetermined thickness and a ridge part protruding from the slab part. The maximum thickness of the slab part is 0.05 times or more and less than 0.4 times a wavelength of a light propagating in the ridge part.
    Type: Grant
    Filed: August 15, 2016
    Date of Patent: April 10, 2018
    Assignee: TDK CORPORATION
    Inventors: Shinji Iwatsuka, Kenji Sasaki, Satoshi Shirai
  • Patent number: 9933244
    Abstract: A beam-shaping optical system suitable for use with optical coherence tomography including a sheath defining a central cavity, a beam-shaping insert defining a beam-shaping element positioned within the central cavity, and an optical fiber having a core and a cladding. The optical fiber defines an angularly prepared fiber end configured to emit an electromagnetic beam toward the beam-shaping element with the core of the optical fiber locally expanded at the fiber end.
    Type: Grant
    Filed: January 18, 2016
    Date of Patent: April 3, 2018
    Assignee: Corning Incorporated
    Inventors: Mark Francis Krol, William James Miller, Robert Adam Modavis
  • Patent number: 9919956
    Abstract: The present disclosure provides optical fiber preforms formed from core canes having large core-clad ratio, intermediate core-cladding assemblies, and methods for making the preforms and core cladding assemblies. The preforms are made from core canes having a contoured end surface. The contoured end surface(s) include a depression that acts to reduce the stress that develops at the junction of the end surface of the core cane with a soot cladding monolith arising from differences in the coefficient of thermal expansions of the core can and soot cladding monolith. The contoured end surface(s) leads to preforms having low defect concentration and low probability of failure during fiber draw.
    Type: Grant
    Filed: September 22, 2016
    Date of Patent: March 20, 2018
    Assignee: Corning Incorporated
    Inventors: Xiaoming Luo, Chunfeng Zhou
  • Patent number: 9915849
    Abstract: Provided is a technique for reducing, using a simple circuit configuration, an amplitude difference between electric signals that are input to respective optical waveguide arms. An optical modulator includes: an optical demultiplexer that splits continuous wave light as received; first and second optical waveguide arms through which the continuous wave light as split propagates; an optical phase ? shifter that introduces a phase shift of ? to the continuous wave light as split; an optical multiplexer combines the continuous wave light propagating through the first and second optical waveguide arms; first and second signal electrodes that respectively input the electric signals to the first and second optical waveguide arms; a junction capacitance connected in shunt to at least one of the first and second signal electrodes; and a DC voltage source that applies a DC voltage to the junction capacitance.
    Type: Grant
    Filed: January 10, 2017
    Date of Patent: March 13, 2018
    Assignee: Mitsubishi Electric Corporation
    Inventors: Satoshi Nishikawa, Toshiyuki Tanaka, Koichi Akiyama, Eiji Yagyu
  • Patent number: 9904025
    Abstract: Embodiments of the invention include a compression-resistant seismic optical fiber cable for repeated deployment. The seismic optical fiber cable includes a central core tube dimensioned to receive at least one bundle of optical fibers. The central core tube is dimensioned to allow the optical fibers in the at least one bundle of optical fibers to relax relative to the other optical fibers. The seismic optical fiber cable also includes at least one strength member layer surrounding the central core tube. The strength member layer provides flexibility and tensile strength to the seismic optical fiber cable. The seismic optical fiber cable also includes a jacket surrounding the strength member. The seismic optical fiber cable also includes at least one rigid fiber reinforced composite rod linearly applied within the jacket. The one linearly-applied rigid fiber reinforced composite rod provides compressive resistance for the seismic optical fiber cable.
    Type: Grant
    Filed: March 21, 2016
    Date of Patent: February 27, 2018
    Assignee: OFS FITEL, LLC
    Inventors: Harold P Debban, Peter A Weimann
  • Patent number: 9904029
    Abstract: An above-ground optical fiber cable installation consists of an optical fiber cable that is laid along an edge of a street (such as along a curb), and then covered with an adhesive overcoat material, such as a fast-curing epoxy and/or concrete repair/resurface compounds. The adhesive overcoat initially functions to affix the optical fiber cable to the street, and as it cures provides a protective encapsulation for the installed cable. The hard shell prevents exposure of the optical fiber cable to the environment and reduces the potential for damage from equipment that might otherwise cut through the cable. This type of cable installation is useful for situations that require rapid deployment, and avoids the need for creating either underground or aerial pathways.
    Type: Grant
    Filed: November 10, 2016
    Date of Patent: February 27, 2018
    Assignee: OFS FITEL, LLC
    Inventors: Daniel Hendrickson, Daryl K Richardson
  • Patent number: 9897763
    Abstract: The disclosure generally relates to sets of optical waveguides such as optical fiber ribbons, and fiber optic connectors useful for connecting multiple optical fibers such as in optical fiber ribbon cables. In particular, the disclosure provides an efficient, compact, and reliable optical fiber connector that incorporates an optically transmissive substrate combining the features of optical fiber alignment, along with redirecting and shaping of the optical beam.
    Type: Grant
    Filed: January 20, 2017
    Date of Patent: February 20, 2018
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: James R. Bylander, Ding Wang
  • Patent number: 9897754
    Abstract: A waveguide structure is provided. A silicon substrate layer, a silicon waveguide layer, a first silicon dioxide layer, a silicide waveguide layer, and a second silicon dioxide layer are stacked in sequence, the silicon waveguide layer is a conical waveguide layer, the silicon waveguide layer and the silicide waveguide layer are coupled by using an evanescent wave, the silicide waveguide layer includes multiple first waveguide blocks and multiple second waveguide blocks, a material of the first waveguide blocks is the same as a material of the silicide waveguide layer, and a refractive index of a material of the second waveguide blocks is lower than a refractive index of the material of the first waveguide blocks. By using the waveguide structure, a waveguide flare size can be increased, so as to match a mode size of a fiber core of an optical fiber.
    Type: Grant
    Filed: April 12, 2017
    Date of Patent: February 20, 2018
    Assignee: HUAWEI TECHNOLOGIES CO., LTD.
    Inventors: Libing Zhou, Weishi Li
  • Patent number: 9885834
    Abstract: Low-coherence enhanced backscattering (LEBS) spectroscopy is an angular resolved backscattering technique that is sensitive to sub-diffusion light transport length scales in which information about the scattering phase function is preserved. Lens-based and lens-free fiber optic LEBS probes are described that are capable of measuring optical properties of a target tissue through depth-limited measurements of backscattering angles within the enhanced backscattered cone.
    Type: Grant
    Filed: August 9, 2013
    Date of Patent: February 6, 2018
    Assignees: NORTHWESTERN UNIVERSITY, AMERICAN BIOOPTICS LLC
    Inventors: Vadim Backman, Jeremy D. Rogers, Nikhil N. Mutyal, Bradley Gould, Andrew J. Radosevich
  • Patent number: 9888524
    Abstract: A cell site includes a tower, a multi-service terminal mounted to the tower and a base transceiver station in communication with the multi-service terminal. The multi-service terminal includes a housing and a plurality of adapters mounted to the housing. Each of the adapters includes an outer port accessible from outside the housing and an inner port accessible from inside the housing.
    Type: Grant
    Filed: January 17, 2017
    Date of Patent: February 6, 2018
    Assignee: COMMSCOPE TECHNOLOGIES LLC
    Inventors: M'hamed Anis Khemakhem, Scott C. Kowalczyk, Nicholas Torman, Dominic J. Louwagie
  • Patent number: 9869823
    Abstract: A connector interface includes: a first connector having an outer body with a first bearing surface facing in a first axial direction; a second connector having an outer body with a second bearing surface facing in a second axial direction opposite the first axial direction; a resilient sealing element disposed between the first and second bearing surfaces; and a coupling nut associated with the first connector and configured to engage a feature on the second connector. Rotation of the coupling nut relative to the first and second connectors draws the first and second bearing surfaces toward each other to compress the sealing element such that the sealing element bulges radially outwardly to engage an inner surface of the coupling nut.
    Type: Grant
    Filed: June 6, 2017
    Date of Patent: January 16, 2018
    Assignee: CommScope Technologies
    Inventor: Adam V. Broughton
  • Patent number: 9869829
    Abstract: A process for preparing a subassembly, the process comprising (a) defining the location of one or more grooves for receiving at least one polymer waveguide in a wafer, (b) etching the grooves into the wafer, each groove having sidewalls and a first facet at the terminal end perpendicular to the side walls, the first facet having a first angle relative to the top planar surface, (c) coating the first facet with a reflective material, and (d) disposing a fluid polymer waveguide precursor into each groove, and writing a core into the polymer material by directing at least one laser beam on the first facet by directing the laser beam into the top of the polymer material such that the beam reflects off of the first facet and down the interior of the polymer material to form the core in the polymer waveguide.
    Type: Grant
    Filed: August 25, 2014
    Date of Patent: January 16, 2018
    Assignees: TE Connectivity Corporation, TE Connectivity Nederland B.V.
    Inventors: Terry Patrick Bowen, Jan Willem Rietveld