Patents Examined by Michael Stahl
  • Patent number: 11835756
    Abstract: An optical fiber comprises a glass fiber comprising a core and a cladding; and a coating resin layer coating the glass fiber, wherein the coating resin layer has a primary resin layer in contact with the glass fiber and coating the glass fiber and a secondary resin layer coating the outer periphery of the primary resin layer, the primary resin layer has a Young's modulus of 0.4 MPa or less at 23° C. and the primary resin layer has an outer diameter of 185 ?m or more and 202 ?m or less, the secondary resin layer has a glass transition temperature of 60° C. or more and 95° C. or less, and the difference between the average linear expansion coefficient of the coating resin layer in the range of 60° C. to 140° C. and the average linear expansion coefficient of the coating resin layer in the range of ?60° C. to 0° C. is 0.7×10?4/° C. or less.
    Type: Grant
    Filed: November 8, 2019
    Date of Patent: December 5, 2023
    Assignee: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Kensaku Shimada, Kazuyuki Sohma, Tatsuya Konishi
  • Patent number: 11835760
    Abstract: The present disclosure provides a calibration system for wavelength-division multiplexing (WDM), a WDM system, and a calibrating method for WDM. The calibration system includes heating devices, an optical sensor, and an electrical device. When the optical sensor receives no beam with energy exceeding a threshold value from a first channel, the optical sensor transmits a first signal to the electrical device. In response to the first signal, the electrical device is configured to control the one or more of the heating devices to heat one or more of channels. When the optical sensor receives a beam having energy exceeding the threshold value from the first channel, the optical sensor transmits a second signal to the electrical device. In response to the second signal, the electrical device is configured to control the one or more of the heating devices to maintain the temperature of the one or more of the channels.
    Type: Grant
    Filed: June 17, 2022
    Date of Patent: December 5, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Tai-Chun Huang, Lan-Chou Cho, Chewn-Pu Jou, Stefan Rusu
  • Patent number: 11835827
    Abstract: A liquid crystal includes first and second substrates, the first substrate including intersecting data lines and scan lines. A liquid crystal layer is sandwiched therebetween. Also, a plurality of sub-pixels districted by data lines and gate lines, and arranged along the long-axis and the short-axis directions in a matrix. A pixel electrode in the sub-pixels includes a central portion. A common electrode including linear electrodes arranged along the data lines and disposed with gaps therebetween. Sub-pixels are bent at the center portion, such that the linear electrodes or the gaps in both sides of the sub-pixels are inclined in opposite directions with respect to the long-axis direction. At least one of the linear electrodes or at least one of the gaps has a bent portion at the central portion of the respective pixel electrode. The common electrode is provided on liquid crystal layer side over the pixel electrode.
    Type: Grant
    Filed: August 27, 2021
    Date of Patent: December 5, 2023
    Assignee: Japan Display Inc.
    Inventors: Takao Atarashiya, Hayato Kurasawa
  • Patent number: 11828989
    Abstract: The present disclosure relates to a fiber optic adapter having a footprint/form factor compatible with an SC adapter mounting structure or an LC adapter mounting structure or both the SC and LC adapter mounting structures. The adapter body may include first and second co-axially aligned connector ports for respectively receiving first and second fiber optic connectors. The fiber optic adapter may also include a fiber alignment structure configured to accommodate at least 12 optical fibers (e.g., 12 non-ferrulized optical fibers) for each of the first and second connector ports. Another aspect of the present disclosure relates to a fiber optic adapter with linearly moveable, spring biased shutters. A further aspect of the present disclosure relates to a ferrule-less fiber optic connector that may include a telescopic shroud and a safety lock for locking the shroud in a fiber protecting position.
    Type: Grant
    Filed: October 10, 2022
    Date of Patent: November 28, 2023
    Assignee: COMMSCOPE TECHNOLOGIES LLC
    Inventor: Danny Willy August Verheyden
  • Patent number: 11815717
    Abstract: The present disclosure relates to semiconductor structures and, more particularly, to a photonic chip security structure and methods of manufacture. The structure includes an optical component and a photonic chip security structure having a vertical wall composed of light absorbing material surrounding the optical component.
    Type: Grant
    Filed: November 12, 2021
    Date of Patent: November 14, 2023
    Assignee: GLOBALFOUNDRIES U.S. INC.
    Inventors: Vibhor Jain, Nicholas A. Polomoff, Yusheng Bian
  • Patent number: 11815750
    Abstract: An optical modulator that uses adiabatic tapers to change the width of the waveguides between multimode waveguides and single mode waveguides on a low-loss, e.g. thin-film lithium niobate, electro-optic platform. The architecture enables the utilization of the fundamental mode of multimode wide optical waveguides that have lower optical propagation loss without sacrificing the benefit of the signal integrity and ease of control of single mode operation.
    Type: Grant
    Filed: November 22, 2021
    Date of Patent: November 14, 2023
    Assignee: HyperLight Corporation
    Inventors: Mian Zhang, Christian Reimer, Kevin Luke
  • Patent number: 11815725
    Abstract: An example photonic integrated circuit includes a transmitter circuit with a optical communication path to an optical coupler configured to couple with an optical fiber. The optical communication path has a propagation direction away from the transmitter circuit and towards the optical coupler. A counter-propagating tap diverts light sent by a light source backward against the propagation direction of the optical communication path. A photodiode receives the diverted light and measures its power level. The photodiode generates a feedback signal for the optical coupler and provides the feedback signal to the optical coupler. The optical coupler receives the feedback signal and adjusts a coupling alignment of the optical communication path to the optical fiber based on the feedback signal, which indicates the measured power level of the diverted counter-propagating light.
    Type: Grant
    Filed: December 17, 2021
    Date of Patent: November 14, 2023
    Assignee: OpenLight Photonics, Inc.
    Inventors: Brandon W. Buckley, Brian Robert Koch, John Garcia, Jared Bauters, Sudharsanan Srinivasan, Anand Ramaswamy
  • Patent number: 11808970
    Abstract: An optical fiber may comprise a core doped with one or more active ions to guide signal light from an input end of the optical fiber to an output end of the optical fiber, a cladding surrounding the core to guide pump light from the input end of the optical fiber to the output end of the optical fiber, and one or more inserts formed in the cladding surrounding the core. The core may have a geometry (e.g., a cross-sectional size, a helical pitch, and/or the like) that varies along a longitudinal length of the optical fiber, which may cause an absorption of the pump light to be modulated along the longitudinal length of the optical fiber.
    Type: Grant
    Filed: November 12, 2021
    Date of Patent: November 7, 2023
    Assignee: Lumentum Operations LLC
    Inventors: Vincent Petit, Martin H. Muendel
  • Patent number: 11808989
    Abstract: A method for producing a microoptoelectromechanical component and a corresponding microoptoelectromechanical component. The microoptoelectromechanical component is equipped with a base substrate comprising a cavity which is formed therein and is closed by a covering substrate, an optical waveguide on the covering substrate above the cavity, which optical waveguide comprises a sheathed waveguide core, an electrical contact element in the region of the surrounding covering substrate, wherein a contact pad formed by an electrically conductive polysilicon layer is arranged underneath the electrical contact element, wherein the optical waveguide and the covering substrate located thereunder are divided into a stationary portion and a deflectable portion, which can be docked to the stationary portion by electrically deflecting the corresponding portion of the covering wafer.
    Type: Grant
    Filed: June 17, 2021
    Date of Patent: November 7, 2023
    Assignee: ROBERT BOSCH GMBH
    Inventor: Rafel Ferré i Tomàs
  • Patent number: 11809009
    Abstract: A data communication system for deploying outside plant fiber optics includes a cassette releasably engageable in a tray pivotably connectable to a tray fastening member disposed in an inside of an enclosure. A test port in the cassette is accessible without pivoting the tray and without pivoting any one or more trays pivotably connected to the tray fastening member.
    Type: Grant
    Filed: June 14, 2021
    Date of Patent: November 7, 2023
    Assignee: Telect, Inc.
    Inventors: Donald Gross, Iuliu Cosmin Gordea
  • Patent number: 11803009
    Abstract: Photonics structures including an optical component and methods of fabricating a photonics structure including an optical component. The photonics structure includes an optical component, a substrate having a cavity and a dielectric material in the cavity, and a dielectric layer positioned in a vertical direction between the optical component and the cavity. The optical component is positioned in a lateral direction to overlap with the cavity in the substrate.
    Type: Grant
    Filed: February 25, 2022
    Date of Patent: October 31, 2023
    Assignee: GlobalFoundries U.S. Inc.
    Inventors: Shesh Mani Pandey, Yusheng Bian, Steven M. Shank, Judson Holt
  • Patent number: 11789296
    Abstract: An optical modulator includes a dielectric layer and a waveguide. The waveguide is disposed on the dielectric layer. The waveguide includes an electrical coupling portion, a slab portion, and an optical coupling portion. The slab portion is directly in contact with both of the electrical coupling portion and the optical coupling portion. The slab portion has a first sub-portion and a second sub-portion connected to the first sub-portion. A top surface of the electrical coupling portion, a top surface of the first sub-portion, and a top surface of the second sub-portion are located at different level heights.
    Type: Grant
    Filed: January 18, 2022
    Date of Patent: October 17, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Lan-Chou Cho, Chewn-Pu Jou, Feng-Wei Kuo, Huan-Neng Chen, Min-Hsiang Hsu
  • Patent number: 11789203
    Abstract: Embodiments are disclosed for a coupling element with embedded modal filtering for a laser and/or a photodiode. An example system includes a laser and an optical coupling element. The laser is configured to emit an optical signal. The optical coupling element is configured to receive the optical signal emitted by the laser. The optical coupling element is also configured to be connected to an optical fiber such that, in operation, the optical signal is transmitted from the laser to the optical fiber via the optical coupling element. Furthermore, the coupling element comprises a tapered section that provides modal filtering of the optical signal.
    Type: Grant
    Filed: June 29, 2021
    Date of Patent: October 17, 2023
    Assignee: MELLANOX TECHNOLOGIES, LTD.
    Inventors: Dimitrios Kalavrouziotis, Yaakov Gridish, Paraskevas Bakopoulos, Anders Gösta Larsson, Elad Mentovich
  • Patent number: 11782202
    Abstract: A light guide receptacle for mounting a plurality of light guides in the interior of a housing part, with a plurality of light bulkheads, is configured to arrange the plurality of light guides, which are mechanically coupled to one another by means of a web, in each case in intermediate spaces between two light bulkheads of the plurality of light bulkheads and to optically decouple spatially adjacent light guides from one another by means of the respective light bulkhead, wherein the plurality of light bulkheads are integrated components of the housing part.
    Type: Grant
    Filed: March 4, 2022
    Date of Patent: October 10, 2023
    Assignee: ABB AG
    Inventor: Stefan Gutermuth
  • Patent number: 11782208
    Abstract: Structures for a wavelength splitter used in a wavelength-division-multiplexing filter stage and methods of forming same. The structure comprises a first waveguide core including a first section, a second section, and a phase delay line between the first section and the second section. The phase delay line of the first waveguide core includes a delay section and a plurality of segments longitudinally arranged in the delay section. The structure further comprises a second waveguide core including a first section, a second section, and a phase delay line between the first section and the second section. The first section of the second waveguide core is positioned adjacent to the first section of the first waveguide core to define a first directional coupler, and the second section of the second waveguide core is positioned adjacent to the second section of the first waveguide core to define a second directional coupler.
    Type: Grant
    Filed: July 6, 2022
    Date of Patent: October 10, 2023
    Assignee: GlobalFoundries U.S. Inc.
    Inventor: Yusheng Bian
  • Patent number: 11762155
    Abstract: Embodiments herein describe an optical system that includes a photonic integrated circuit (PIC) bonded to a package containing an electrical integrated circuit (EIC). However, this bond can prevent an edge coupler from optically aligning an optical fiber to an edge of the PIC in order to transfer optical signals. To provide room for the edge coupler, the PIC is arranged to overhang the package containing the EIC so that the package does not interfere with the ability of the edge coupler to align with the side or edge of the PIC. In this manner, an optical fiber can be optically aligned (e.g., butt coupled) to the edge of the PIC rather than having to use a grating coupler or some other less efficient optical coupling in order to transfer optical signals between the PIC and the optical fiber.
    Type: Grant
    Filed: August 25, 2021
    Date of Patent: September 19, 2023
    Assignee: Cisco Technology, Inc.
    Inventors: Vipulkumar K. Patel, Matthew J. Traverso, Sandeep Razdan, Aparna R. Prasad
  • Patent number: 11762154
    Abstract: A first chip includes a first plurality of optical waveguides exposed at a facet of the first chip. A second chip includes a second plurality of optical waveguides exposed at a facet of the second chip. The second chip includes first and second spacers on opposite sides of the second plurality of optical waveguides. The first and second spacers have respective alignment surfaces oriented substantially parallel to the facet of the second chip at a controlled perpendicular distance away from the facet of the second chip. The second chip is positioned with the alignment surfaces of the first and second spacers contacting the facet of the first chip, and with the second plurality of optical waveguides respectively aligned with the first plurality of optical waveguides. The first and second spacers define and maintain an air gap of at least micrometer-level precision between the first and second pluralities of optical waveguides.
    Type: Grant
    Filed: July 26, 2021
    Date of Patent: September 19, 2023
    Assignee: Ayar Labs, Inc.
    Inventors: Manan Raval, Matthew Sysak, Chen Li, Chong Zhang
  • Patent number: 11762146
    Abstract: A plurality of waveguide structures are formed in at least one silicon layer of a first member. The first member includes: a first surface of a first silicon dioxide layer that is attached to a second member that consists essentially of an optically transmissive material having a thermal conductivity less than about 50 W/(m·K), and a second surface of material that was deposited over at least some of the plurality of waveguide structures. An array of phase shifters is formed in one or more layers of the first member. An array of temperature controlling elements are in proximity to the array of phase shifters.
    Type: Grant
    Filed: April 13, 2022
    Date of Patent: September 19, 2023
    Assignee: Analog Photonics LLC
    Inventors: Michael Robert Watts, Benjamin Roy Moss, Ehsan Shah Hosseini, Christopher Vincent Poulton, Peter Nicholas Russo
  • Patent number: 11754790
    Abstract: An exchangeable optic fiber connector assembly, including a pair of optic fiber connectors and a switching structure, is provided. Each optic fiber connector has a first locking portion and a first stopping portion. The switching structure has a pair of guiding slots. The optic fiber connectors respectively pass through the guiding slots to be movable and rotatable along the corresponding guiding slots. The switching structure further has a plurality of second locking portions and a plurality of second stopping portions disposed at two opposite ends of each guiding slot. Each optic fiber connector is locked with one of the second locking portions through the first locking portion, and the second stopping portion next to the locked second locking portion is located on a moving path of the first stopping portion.
    Type: Grant
    Filed: September 7, 2022
    Date of Patent: September 12, 2023
    Assignee: ACON OPTICS COMMUNICATIONS INC.
    Inventors: Jia Rong Wu, Tsung Yao Hsu
  • Patent number: 11754785
    Abstract: Methods and apparatuses for mode conversion. An apparatus that includes a substrate, a first waveguide, a second waveguide, a micro-electro-mechanical systems (MEMS) perturber, and a controller is provided. The first waveguide is formed on the substrate includes: (i) an input section, (ii) a bend section, and (iii) an output section. The second waveguide is also formed on the substrate and is disposed adjacent to a portion of the input section of the first waveguide. A portion of the second waveguide is separated from the input section of the first waveguide by a coupling gap. The perturber is disposed above the first waveguide and configured to move between a first position that is distal from a surface of the input section of the first waveguide and a second position that is closer to the surface of the input section of the first waveguide than the second position. The controller is configured to control a movement of the perturber between the first position and the second position.
    Type: Grant
    Filed: August 20, 2021
    Date of Patent: September 12, 2023
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Marcel W. Pruessner, Dmitry A. Kozak, Todd H. Stievater, Brian J. Roxworthy