Patents Examined by Michail A Belyavskyi
  • Patent number: 11512292
    Abstract: An antibody that binds a glycosylated protein is disclosed, wherein the glycosylation comprises the glycan motif Fuc?1-2Gal?1-3GlcNAc?1-3Gal?1 or Fuc?1-2Gal?1-3GlcNAc. Antibodies that are cytotoxic against undifferentiated pluripotent cells are also disclosed.
    Type: Grant
    Filed: August 20, 2019
    Date of Patent: November 29, 2022
    Assignee: Agency for Science, Technology and Research
    Inventors: Boon Hwa Andre Choo, Jiyun Zheng
  • Patent number: 11499168
    Abstract: The invention relates to a method to determine a homology directed repair (HDR) event within a eukaryotic cell, wherein the cell expresses a first isoform of a surface protein, which is different from a second isoform of said surface protein with regard to an amino acid marker. The method comprises the steps of inducing a DNA double strand break, providing a HDR template DNA construct comprising the amino acid marker corresponding to the second isoform of the surface protein and subsequently determining the expression of the first or second isoform of said surface protein on said cell, wherein expression of the second isoform indicates a successful HDR event. The invention also relates to a method for editing a genomic location of interest within a eukaryotic cell, and to a method of selectively depleting or enriching an edited cell in a composition of non-edited and edited cells.
    Type: Grant
    Filed: April 25, 2017
    Date of Patent: November 15, 2022
    Assignee: UNIVERSITAT BASEL
    Inventors: Mara Kornete, Lukas Jeker
  • Patent number: 11497771
    Abstract: Provided in the present disclosure is a method for using a four-plasmid system to prepare modified immune effector cells. The method comprises: forming a lentivirus by using four plasmids within 293T cells, extracting and obtaining the lentivirus, then transfecting immune effector cells by using the lentivirus, and expressing a chimeric antigen receptor. Also provided in the present disclosure is a use of the immune effector cell obtained by using the described method and of a composition containing the immune effector cell.
    Type: Grant
    Filed: August 26, 2021
    Date of Patent: November 15, 2022
    Assignee: JUVENTAS CELL THERAPY LTD.
    Inventors: Yun Liu, Lin Shi, Lulu Lv, Pan Xie, Mengmeng Cao, Wang Yang, Jiaxing Yang, Fei Wang, Rui Wang
  • Patent number: 11471485
    Abstract: The present invention is directed to a method of generating multilineage potential cells by de-differentiation of somatic leukocytes in a mixed leukocyte suspension from a blood sample. The present invention is also directed to the use of the generated multilineage potential cells to treat conditions in humans and mammals.
    Type: Grant
    Filed: December 12, 2018
    Date of Patent: October 18, 2022
    Inventors: Yi-Chen Lee, Tina Yu-Ming Pai
  • Patent number: 11464800
    Abstract: The disclosure relates to methods of manufacturing T cells for adoptive immunotherapy. The disclosure further provides for methods of genetically transducing T cells, methods of using T cells, and T cell populations thereof. In an aspect, the disclosure provides for methods of thawing frozen peripheral blood mononuclear cells (PBMC), resting the thawed PBMC, activating the T cell in the cultured PBMC with an anti-CD3 antibody and an anti-CD28 antibody immobilized on a solid phase, transducing the activated T cell with a viral vector, expanding the transduced T cell, and obtaining expanded T cells.
    Type: Grant
    Filed: February 8, 2019
    Date of Patent: October 11, 2022
    Assignee: Immatics US, Inc.
    Inventors: Mamta Kalra, Zoe Coughlin, Amir Alpert, Steffen Walter, Ali Mohamed, Agathe Bourgogne
  • Patent number: 11464879
    Abstract: The present invention relates to an isolated cellular targeted delivery system comprising a CD45+ leukocyte cell comprising within said cell a complex of one or more iron binding proteins and an active ingredient as well as methods for producing such isolated cellular targeted delivery system and uses of such system for therapy, in particular for therapy of cancer.
    Type: Grant
    Filed: June 22, 2016
    Date of Patent: October 11, 2022
    Inventors: Magdalena Krol, Irene Benni, Paola Baiocco, Tomasz Rygiel, Alberto Boffi
  • Patent number: 11458165
    Abstract: Methods and compositions are provided for combined transplantation of a solid organ and hematopoietic cells to a recipient, where tolerance to the graft is established through development of a persistent mixed chimerism. An individual with persistent mixed chimerism, usually for a period of at least six months, is able to withdraw from the use of immunosuppressive drugs after a period of time sufficient to establish tolerance.
    Type: Grant
    Filed: July 18, 2019
    Date of Patent: October 4, 2022
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Samuel Strober, Robert Lowsky
  • Patent number: 11447746
    Abstract: The present invention relates to a method for inducing amplification of human type I NKT cells in vitro using a “specific stimulant+staged cytokine” mode, which consists of two culture stages, wherein the first culture stage focuses on specific amplification of the number of the type I NKT cells, in which a specific stimulant ?-GalCer is used to advantageously amplify the type I NKT cells and ?-GalCer-loaded CD1d-expressing cells are used to stimulate continuous proliferation of the type I NKT cells while adding cytokines IL-2 and IL-7 to assist growth of the type I NKT cells; and the second culture stage is to synchronously perform amplification of the number of the type I NKT cells and guide directed function differentiation, in which CD1d-expressing cells incubated with ?-GalCer continue to stimulate proliferation of the type I NKT cells while adding IL-2, IL-7 and IL-15 to assist amplification of the type I NKT cells and guide differentiation, and IL-12 is added to the culture system 1-2 days before the e
    Type: Grant
    Filed: November 1, 2017
    Date of Patent: September 20, 2022
    Assignee: Shanghai Innovative Chang'An Biological Technology Co., Ltd.
    Inventors: Jianqing Xu, Xiaoyan Zhang, Jing Wang, Lingyan Zhu
  • Patent number: 11447747
    Abstract: The disclosure provides methods for improved hematopoietic stem cell transplantations, including methods to enhance protection from graft versus host disease while maintaining effective immune responses such as graft versus tumor immune responses. The disclosure provides methods for administering, for example, hematopoietic stem and progenitor cells, regulatory T cells, and conventional T cells, wherein the conventional T cells are administered after the hematopoietic stem and progenitor cells and regulatory T cells. The disclosure also provides methods for administering, for example, hematopoietic stem and progenitor cells, regulatory T cells, and conventional T cells, wherein the regulatory T cells have not been cryopreserved prior to administration.
    Type: Grant
    Filed: September 24, 2020
    Date of Patent: September 20, 2022
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Everett Hurteau Meyer, Robert S. Negrin
  • Patent number: 11446329
    Abstract: Disclosed are methods and compositions useful for treating patients with inflammatory, auto-immune and age related conditions. The disclosure relates to using Natural Killer cells and derivatives thereof in order to induce therapeutic benefit to patients affected by disease and conditions such as cancer, multiple sclerosis, rheumatoid arthritis, type I diabetes mellitus, thyroid autoimmune disease, psoriasis and inflammatory bowel diseases. In some embodiments the disclosure permits physiological compensation for disease conditions by reduction of inflammatory cytokine levels in plasma and of senescent peripheral blood mononuclear cells thereby prolonging the time until medical intervention may be required. In alternate embodiments the disclosure permits physiological compensation for disease conditions by reduction of inflammatory cytokine levels in plasma and reduction of senescent peripheral blood mononuclear cells following medical intervention.
    Type: Grant
    Filed: November 1, 2018
    Date of Patent: September 20, 2022
    Inventors: Nickolas Chelyapov, Rafael Gonzalez
  • Patent number: 11439662
    Abstract: Methods and compositions are provided for combined transplantation of a solid organ and hematopoietic cells to a recipient, where tolerance to the graft is established through development of a persistent mixed chimerism. An individual with persistent mixed chimerism, usually for a period of at least six months, is able to withdraw from the use of immunosuppressive drugs after a period of time sufficient to establish tolerance.
    Type: Grant
    Filed: July 18, 2019
    Date of Patent: September 13, 2022
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Samuel Strober, Robert Lowsky
  • Patent number: 11433097
    Abstract: Methods of treating melanomas refractory to other therapies using tumor infiltrating lymphocytes are disclosed. Also disclosed is the use of IP-10 as a biomarker for predicting treatment efficacy.
    Type: Grant
    Filed: December 5, 2018
    Date of Patent: September 6, 2022
    Assignee: Iovance Biotherapeutics, Inc.
    Inventor: Maria Fardis
  • Patent number: 11426429
    Abstract: Methods and compositions are provided for combined transplantation of a solid organ and hematopoietic cells to a recipient, where tolerance to the graft is established through development of a persistent mixed chimerism. An individual with persistent mixed chimerism, usually for a period of at least six months, is able to withdraw from the use of immunosuppressive drugs after a period of time sufficient to establish tolerance.
    Type: Grant
    Filed: June 20, 2019
    Date of Patent: August 30, 2022
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Samuel Strober, Robert Lowsky
  • Patent number: 11414674
    Abstract: A method of expanding deficient T-cells by expressing pTalpha or functional variants thereof into said cells, thereby restoring a functional CD3 complex. This method is particularly useful to enhance the efficiency of immunotherapy using primary T-cells from donors. This method involves the use of pTalpha or functional variants thereof and polynucleotides encoding such polypeptides to expand TCRalpha deficient T-cells. Such engineered cells can be obtained by using specific rare-cutting endonuclease, preferably TALE-nucleases. The use of Chimeric Antigen Receptor (CAR), especially multi-chain CAR, in such engineered cells to target malignant or infected cells. The invention opens the way to standard and affordable adoptive immunotherapy strategies for treating cancer and viral infections.
    Type: Grant
    Filed: March 22, 2019
    Date of Patent: August 16, 2022
    Assignee: CELLECTIS
    Inventors: Roman Galetto, Agnes Gouble, Stephanie Grosse, Cecile Mannioui, Laurent Poirot, Andrew Scharenberg, Julianne Smith
  • Patent number: 11401503
    Abstract: An embodiment of the invention provides a method of promoting regression of cancer in a mammal comprising obtaining a tumor tissue sample from the mammal; culturing the tumor tissue sample in a first gas permeable container containing cell medium therein; obtaining tumor infiltrating lymphocytes (TIL) from the tumor tissue sample; expanding the number of TIL in a second gas permeable container containing cell medium therein using irradiated allogeneic feeder cells and/or irradiated autologous feeder cells; and administering the expanded number of TIL to the mammal. Methods of obtaining an expanded number of TIL from a mammal for adoptive cell immunotherapy are also provided.
    Type: Grant
    Filed: December 6, 2018
    Date of Patent: August 2, 2022
    Assignees: The United States of America, as represented by the Secretary, Department of Health and Human Services, Wilson Wolf Manufacturing Corporation
    Inventors: Steven A. Rosenberg, Mark E. Dudley, David Stroncek, Marianna Sabatino, Jianjian Jin, Robert Somerville, John R. Wilson
  • Patent number: 11382931
    Abstract: Described herein are methods for selecting lymphocytes for adoptive cell therapy based on P-glycoprotein expression and compositions comprising same.
    Type: Grant
    Filed: July 14, 2017
    Date of Patent: July 12, 2022
    Assignee: University of Southern California
    Inventor: Preet M. Chaudhary
  • Patent number: 11384337
    Abstract: The present invention provides improved and/or shortened methods for expanding TILs and producing therapeutic populations of TILs, including novel methods for expanding TIL populations in a closed system that lead to improved efficacy, improved phenotype, and increased metabolic health of the TILs in a shorter time period, while allowing for reduced microbial contamination as well as decreased costs. The methods may comprise gene-editing at least a portion of the TILs to enhance their therapeutic efficacy. Such TILs find use in therapeutic treatment regimens.
    Type: Grant
    Filed: July 28, 2021
    Date of Patent: July 12, 2022
    Assignee: Iovance Biotherapeutics, Inc.
    Inventors: Cecile Chartier-Courtaud, Krit Ritthipichai
  • Patent number: 11345752
    Abstract: The present invention provides isolated monoclonal antibodies that specifically bind LAG-3, and have optimized functional properties compared to previously described anti-LAG-3 antibodies, such as antibody 25F7 (US 2011/0150892 A1). These properties include reduced deamidation sites, while still retaining high affinity binding to human LAG-3, and physical (i.e., thermal and chemical) stability. Nucleic acid molecules encoding the antibodies of the invention, expression vectors, host cells and methods for expressing the antibodies of the invention are also provided, as well as immunoconjugates, bispecific molecules and pharmaceutical compositions comprising the antibodies. The present invention also provides methods for detecting LAG-3, as well as methods for treating stimulating immune responses using an anti-LAG-3 antibody of the invention. Combination therapy, in which the antibodies are co-administered with at least one additional immunostimulatory antibody, is also provided.
    Type: Grant
    Filed: February 28, 2019
    Date of Patent: May 31, 2022
    Assignee: Bristol-Myers Squibb Company
    Inventors: Nils Lonberg, Mohan Srinivasan
  • Patent number: 11344579
    Abstract: The present invention provides improved and/or shortened methods for expanding TILs and producing therapeutic populations of TILs, including novel methods for expanding TIL populations in a closed system that lead to improved efficacy, improved phenotype, and increased metabolic health of the TILs in a shorter time period, while allowing for reduced microbial contamination as well as decreased costs. Such TILs find use in therapeutic treatment regimens.
    Type: Grant
    Filed: September 21, 2021
    Date of Patent: May 31, 2022
    Assignee: Iovance Biotherapeutics, Inc.
    Inventors: Seth Wardell, James Bender, Michael T. Lotze
  • Patent number: 11337998
    Abstract: The present invention provides improved and/or shortened methods for expanding TILs and producing therapeutic populations of TILs, including novel methods for expanding TIL populations in a closed system that lead to improved efficacy, improved phenotype, and increased metabolic health of the TILs in a shorter time period, while allowing for reduced microbial contamination as well as decreased costs. Such TILs find use in therapeutic treatment regimens.
    Type: Grant
    Filed: September 21, 2021
    Date of Patent: May 24, 2022
    Assignee: Iovance Biotherapeutics, Inc.
    Inventors: Seth Wardell, James Bender, Michael T. Lotze