Patents Examined by Mohamad O El Sayah
  • Patent number: 11971257
    Abstract: Disclosed is a method and apparatus with localization. The method includes determining a sensor-based reference position using a position sensor of the vehicle, determining an image-based reference position of the vehicle based on image information of the vehicle captured using a camera of the vehicle, setting an acceptance range for the image-based reference position based on a driving situation of the vehicle, and comparing an error level of the image-based reference position to the acceptance range and estimating a current position of the vehicle.
    Type: Grant
    Filed: April 16, 2021
    Date of Patent: April 30, 2024
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hyun Cheol Jeon, Chul Woo Kang, Kyungboo Jung
  • Patent number: 11970176
    Abstract: In an abnormality determination device for determining presence or absence of an abnormality of a 6-axis inertial measurement sensor installed in a vehicle to detect a forward-backward acceleration, a lateral acceleration, a vertical acceleration, a roll rate, a pitch rate, and a yaw rate of the vehicle, the abnormality determination device includes: a 3-axis inertial measurement sensor that detects the forward-backward acceleration, the lateral acceleration, and the yaw rate; and an abnormality determination unit that determines presence or absence of an abnormality of the 6-axis inertial measurement sensor, wherein the abnormality determination unit determines the presence or absence of an abnormality of the 6-axis inertial measurement sensor by comparing the forward-backward acceleration, the lateral acceleration, and the yaw rate acquired by the 6-axis inertial measurement sensor with the forward-backward acceleration, the lateral acceleration, and the yaw rate acquired by the 3-axis inertial measurement
    Type: Grant
    Filed: December 27, 2021
    Date of Patent: April 30, 2024
    Assignee: HONDA MOTOR CO., LTD.
    Inventor: Tomoyuki Hosoya
  • Patent number: 11967912
    Abstract: An object of the present invention is to provide a motor control device capable of estimating a delay with high accuracy even in a case where there is a fluctuation in disturbance torque or delay time and of suppressing the influence of the delay. For this end, the present invention includes a motor MTR, an ECU 2 that controls the rotation of the motor MTR, and an ECU 1 that sends a torque command to the ECU 2 based on a command value. The ECU 1 includes a disturbance estimation block 100 and a delay estimation block 200. The disturbance estimation block 100 estimates disturbance torque (?d) using a torque command input to the ECU 2 and a feedback value of the motor MTR. The delay estimation block 200 estimates a delay using a torque command output from the ECU 1, the feedback value of the motor MTR, and the disturbance torque (?d).
    Type: Grant
    Filed: June 17, 2019
    Date of Patent: April 23, 2024
    Assignee: Hitachi Astemo, Ltd
    Inventors: Hiroaki Sato, Toshiyuki Ajima, Kenichiro Matsubara, Daisuke Goto
  • Patent number: 11958384
    Abstract: The control device includes a vehicle required braking force acquisition unit that acquires a vehicle required braking force that is a required value of the braking force applied to the vehicle, and a roll control unit that controls the rolling motion of the vehicle by adjusting a distribution ratio of the braking force with respect to a target wheel including at least one of a rear wheel on an inside during turning and a front wheel on an outside during turning of the vehicle when the braking force is applied to the vehicle according to the vehicle required braking force under a situation where the vehicle is turning.
    Type: Grant
    Filed: January 24, 2020
    Date of Patent: April 16, 2024
    Assignee: ADVICS CO., LTD.
    Inventor: Yusaku Yamamoto
  • Patent number: 11952060
    Abstract: The invention relates to a steering assembly (12) for a vehicle (10). The steering assembly (12) comprises a first steering actuator (14) and a second steering actuator (16). The first steering actuator (14) is adapted to be actuated in accordance with at least one signal issued from a motion control system (18) to control a steering angle of at least one steerable ground engaging member (20, 22) of the vehicle (10) to thereby control the steering of the vehicle (10). The first steering actuator (14) is associated with a first nominal steering capability, defining at least one limitation of at least one of the following: steering angle, steering angle rate and steering torque, for the at least one steerable ground engaging member (20, 22).
    Type: Grant
    Filed: June 25, 2018
    Date of Patent: April 9, 2024
    Assignee: Volvo Truck Corporation
    Inventors: Leo Laine, Jan-Inge Svensson, Lionel Farres, Christian Oscarsson, Leon Henderson, Jose Vilca, Kristoffer Tagesson, Johanna Majqvist
  • Patent number: 11945705
    Abstract: Controlling a maximum vehicle speed for an industrial vehicle includes determining, by a processor of the industrial vehicle, a torque applied to the traction wheel of the industrial vehicle; converting the torque to an equivalent force value; and determining an acceleration of the industrial vehicle while the torque is applied to the traction wheel. Additional steps include calculating a load being moved by the industrial vehicle, based at least in part on the acceleration and the equivalent force value; and controlling the maximum speed of the industrial vehicle based on the calculated load being moved by the industrial vehicle.
    Type: Grant
    Filed: November 23, 2021
    Date of Patent: April 2, 2024
    Assignee: Crown Equipment Corporation
    Inventors: Joe K. Hammer, Mark E. Addison
  • Patent number: 11945437
    Abstract: A vehicle is provided that includes a cruise control deactivation system. The system includes a cruise control system, and a user control that, when activated, commands deactivation of the cruise control system. The system also includes a processor configured to permit or override the commanded deactivation of the cruise control system while the vehicle is moving, based on at least one criterion. Criteria may include whether or not a first sensor detects a foot of a driver of the vehicle on an accelerator pedal of the vehicle, and whether or not a first computation indicates that the deactivation of the cruise control system will cause a collision with a second vehicle located behind the vehicle.
    Type: Grant
    Filed: August 13, 2021
    Date of Patent: April 2, 2024
    Assignee: TOYOTA MOTOR ENGINEERING & MANUFACTURING NORTH AMERICA, INC.
    Inventors: Timothy Wang, Roger Akira Kyle, Bryan Else Yamasaki, Justin K. Shen
  • Patent number: 11938635
    Abstract: A motion control method, a robot controller, and a computer readable storage medium are provided. The method includes: calculating an inverse Jacobian matrix of a whole-body generalized coordinate vector at a current time relative to an actual task space vector of a humanoid robot; calculating a target generalized coordinate vector corresponding to a to-be-executed task space vector at a current moment by combining an actual task space vector and the to-be-executed task space vector into a null space of the inverse Jacobian matrix according to preset position constraint(s) corresponding to the whole-body generalized coordinate vector; and controlling a motion state of the humanoid robot according to the target generalized coordinate vector. In this manner, the motion of the humanoid robot is optimized as a whole to achieve the purpose of controlling the humanoid robot to avoid the limits of the motion of joints.
    Type: Grant
    Filed: March 24, 2022
    Date of Patent: March 26, 2024
    Assignee: UBTECH ROBOTICS CORP LTD
    Inventors: Zhihao Zhang, Yizhang Liu, Jinliang Chen, Youjun Xiong
  • Patent number: 11934198
    Abstract: Disclosed herein are systems and methods for autonomous vehicle operation, in which a processor is configured to receive sensor data collected by a first sensor of a first autonomous vehicle during navigation of the first autonomous vehicle through a particular location and prior to a control signal subsequently generated by a controller of the first autonomous vehicle; determine based on the sensor data an event that triggered the control signal. A communication device coupled to the processor is configured to transmit to a second autonomous vehicle an instruction, based on the determined event, to adjust sensor data collected by a second sensor of the second autonomous vehicle during navigation of the second autonomous vehicle in the particular location.
    Type: Grant
    Filed: March 11, 2021
    Date of Patent: March 19, 2024
    Assignee: 6 River Systems, LLC
    Inventor: James Barabas
  • Patent number: 11926325
    Abstract: A vehicle control apparatus includes a processor. Before the vehicle passes through an inflection point of a curvature of a target trajectory, the processor sets a first reference point before the inflection point. After the vehicle passes through the inflection point, the processor sets a second reference point at a position where a second distance from a current position of the vehicle after the vehicle passes through the inflection point to the second reference point is longer than a first distance from a current position of the vehicle before the vehicle passes through the inflection point to the first reference point when compared under travel conditions identical in a vehicle speed, an acceleration rate, a deceleration rate, or a steering angle. The processor sets a target steering angle based on the curvature of an arc passing through the current position and the first reference point or the second reference point.
    Type: Grant
    Filed: September 15, 2021
    Date of Patent: March 12, 2024
    Assignee: SUBARU CORPORATION
    Inventors: Yosuke Takebayashi, Takeshi Yoneda
  • Patent number: 11926052
    Abstract: A robot control method includes: acquiring distances between a center of mass (COM) of the biped robot and each of preset key points of feet of the biped robot, and acquiring an initial position of the COM of the biped robot; calculating a position offset of the COM based on the distances; adjusting the initial position of the COM based on the position offset of the COM to obtain a desired position of the COM of the biped robot; and determining desired walking parameters of the biped robot based on the desired position of the COM by using a preset inverse kinematics algorithm, wherein the desired walking parameters are configured to control the biped robot to walk.
    Type: Grant
    Filed: December 23, 2020
    Date of Patent: March 12, 2024
    Assignee: UBTECH ROBOTICS CORP LTD
    Inventors: Chunyu Chen, Yizhang Liu, Ligang Ge, Zheng Xie, Youjun Xiong, Jianxin Pang
  • Patent number: 11911913
    Abstract: The invention relates to a method for transferring a pourable medium (10) from a first vessel (12) into a second vessel (14), by means of a robot arm (16), wherein a movement 118) of the robot arm (16) can be controlled by at least one movement parameter (BP), including, inter alia, the following method steps: d) determining the mass of the medium (10) transferred into the second vessel (14) as an actual filling mass (IFM), and also the variation over time of the actual filling mass (IFM) of the medium (30; as an actual mass flow (IMS), by means of a balance 124), c) calculating a correcting mass flow (StMS) as a correcting variable (26) of a first control circuit (28) while taking into account the actual filling mass (FM) and the intended filling mass (SFM), f) using the correcting variable (26) of die first control circuit (28) as a reference variable (30) of a second control circuit (32) for the purpose that the calculated correcting mass flow (StMS) is used as the intended mass flow (SMS), g) calculating
    Type: Grant
    Filed: November 21, 2019
    Date of Patent: February 27, 2024
    Assignee: BAYER AKTIENGESELLSCHAFT
    Inventors: Leslaw Mleczko, Armin Schweiger, Kathrin Wegener, Carl-Helmut Coulon
  • Patent number: 11897478
    Abstract: Embodiments described herein provide a method for using one or more audio signals from one or more sensors to establish the presence and severity of precipitation at a particular location. Methods may include: receiving at least one first audio signal from a first audio sensor of a vehicle; extracting acoustical features including frequency and amplitude from the at least one first audio signal; receiving at least one second audio signal from a second audio sensor of the vehicle; extracting acoustical features including frequency and amplitude from the at least one second audio signal; processing the frequency and amplitude from the at least one first audio signal and the frequency and amplitude from the at least one second audio signal as inputs to an algorithm to generate an output from the algorithm; and determining, from the output of the algorithm, a precipitation condition and a confidence measure of the precipitation condition.
    Type: Grant
    Filed: May 13, 2021
    Date of Patent: February 13, 2024
    Assignee: HERE GLOBAL B.V.
    Inventors: Leon Stenneth, Bruce Bernhardt, Advait Raut
  • Patent number: 11897466
    Abstract: A vehicle control apparatus may include: a profile generator that generates at least one speed profile including a hysteresis section, in which deceleration and acceleration due to coasting of a vehicle are repeated, based on an environmental condition of the vehicle; a profile selector that selects a speed profile, which satisfies a predetermined condition, from among the at least one speed profile; and a controller that controls a speed of the vehicle depending on the speed profile selected by the profile selector.
    Type: Grant
    Filed: September 16, 2021
    Date of Patent: February 13, 2024
    Assignees: HYUNDAI MOTOR COMPANY, KIA CORPORATION
    Inventor: Hee Gwon Kim
  • Patent number: 11897451
    Abstract: Provided is an apparatus for controlling a vehicle, the apparatus including: a communicator configured to receive a setting value signal related to at least one of a first setting value, a second setting value, or a third setting value that are set in advance from a user terminal, and transmit a signal to the user terminal; and a controller configured to control at least one of a travelling device, a braking device, or a steering device based on the at least one of the first setting value, the second setting value, or the third setting value that are set in advance.
    Type: Grant
    Filed: July 31, 2020
    Date of Patent: February 13, 2024
    Assignee: HL MANDO CORPORATION
    Inventors: Yunsun Choi, Minsang Seong, Yongjoon Lee, Jaegon Lee
  • Patent number: 11891061
    Abstract: A lateral virtual boundary for a host vehicle is identified based on a lateral distance between the host vehicle and a target vehicle, a longitudinal distance between the host vehicle and the target vehicle, and a speed of the target vehicle relative to the host vehicle. A forward virtual boundary for the host vehicle is identified based on the longitudinal distance between the host vehicle and the target vehicle. A lateral constraint value of the lateral virtual boundary and a forward constraint value of the forward virtual boundary are determined. A longitudinal acceleration and a steering angle are determined based on the lateral and forward virtual boundaries and the lateral and forward constraint values. One or both of a steering component or a brake are actuated based on the longitudinal acceleration and the steering angle.
    Type: Grant
    Filed: June 17, 2021
    Date of Patent: February 6, 2024
    Assignee: Ford Global Technologies, LLC
    Inventors: Yousaf Rahman, Hongtei Eric Tseng, Mrdjan J. Jankovic
  • Patent number: 11890072
    Abstract: A robotic surgical system includes a controller configured or programmed to change a length between a first axis and a second axis in a direction in which a shaft extends, the length serving as a control parameter, according to a rotation speed of the shaft with respect to an amount of operation to control operation of a surgical instrument.
    Type: Grant
    Filed: October 13, 2021
    Date of Patent: February 6, 2024
    Assignees: KAWASAKI JUKOGYO KABUSHIKI KAISHA, MEDICAROID CORPORATION
    Inventors: Yuichi Mizohata, Nobuyasu Shimomura, Ayataka Kobayashi
  • Patent number: 11884321
    Abstract: A vehicular self-diagnosis device includes first to third sensors that detect parameters to be used in steering control of a vehicle, first to third turn estimators that respectively estimate turn statuses of the vehicle based on a steering angle detected by the first sensor, vehicle behavior detected by the second sensor, and a lane curvature and a vehicle-versus-lane yaw angle of the vehicle relative to the lane curvature detected by the third sensor, an offset extractor that extracts first to third offset components respectively from signals indicating the estimated turn statuses, an offset-divergence-amount calculator that calculates a maximum divergence amount based on maximum and minimum values of the first to third offset components, and a comparison unit that compares the maximum divergence amount with a predetermined threshold value and determines that inconsistency exists among the first to third sensors if the maximum divergence amount exceeds the threshold value.
    Type: Grant
    Filed: October 5, 2021
    Date of Patent: January 30, 2024
    Assignee: SUBARU CORPORATION
    Inventor: Takashi Omikawa
  • Patent number: 11884294
    Abstract: In various examples, sensor data may be collected using one or more sensors of an ego-vehicle to generate a representation of an environment surrounding the ego-vehicle. The representation may include lanes of the roadway and object locations within the lanes. The representation of the environment may be provided as input to a longitudinal speed profile identifier, which may project a plurality of longitudinal speed profile candidates onto a target lane. Each of the plurality of longitudinal speed profiles candidates may be evaluated one or more times based on one or more sets of criteria. Using scores from the evaluation, a target gap and a particular longitudinal speed profile from the longitudinal speed profile candidates may be selected. Once the longitudinal speed profile for a target gap has been determined, the system may execute a lane change maneuver according to the longitudinal speed profile.
    Type: Grant
    Filed: December 22, 2020
    Date of Patent: January 30, 2024
    Assignee: NVIDIA Corporation
    Inventors: Zhenyi Zhang, Yizhou Wang, David Nister, Neda Cvijetic
  • Patent number: 11878716
    Abstract: The present application provides a method and apparatus for planning an autonomous vehicle, an electronic device and a storage medium, which relates to the field of autonomous driving. According to the technical solutions of the present application, time points of entering a vehicle-converging area can be accurately predicted according to traveling conditions of two parties, so that a driving behavior of the autonomous vehicle is controlled more accurately.
    Type: Grant
    Filed: December 16, 2020
    Date of Patent: January 23, 2024
    Inventors: Zhongpu Xia, Yaqin Chen, Yifeng Pan, Hongye Li