Patents Examined by Mohamed Charioui
  • Patent number: 11970246
    Abstract: A ship cabin loading capacity measurement method and apparatus thereof, comprises: acquiring point cloud measurement data of a ship cabin; optimizing the point cloud measurement data according to a predetermined point cloud data processing rule, and generating optimized ship cabin point cloud data; calculating said ship cabin point cloud data with a predetermined loading capacity calculation rule, and getting ship cabin loading capacity data. According to the ship cabin loading capacity measurement method of the present invention, the point cloud measurement data can be acquired by a lidar, and processing the point cloud measurement data of the ship cabin with a predetermined point cloud data processing law and a computation law, and as the point cloud data processing law and the computation law can be deployed in a computer device in advance, after point cloud measurement data acquisition, loading capacity of a ship cabin can be acquired quickly and precisely.
    Type: Grant
    Filed: February 5, 2021
    Date of Patent: April 30, 2024
    Assignee: Zhoushan Institute of Calibration and Testing for Quality and Technology Supervision
    Inventors: Huadong Hao, Cunjun Li, Xianlei Chen, Haolei Shi, Ze'nan Wu, Junxue Chen, Zhengqian Shen, Yingying Wang, Huizhong Xu
  • Patent number: 11965407
    Abstract: Methods and systems for wellbore path planning are disclosed. The method includes defining total depth coordinates of a candidate wellbore path within a hydrocarbon reservoir, obtaining geoscience data for a subterranean region enclosing the hydrocarbon reservoir, and obtaining historical drilling data from an offset well in the subterranean region. The method further includes training a machine learning network to predict drilling hazard probabilities along the candidate wellbore path using the geoscience data and the historical drilling data. The method still further includes determining a first wellbore path to terminate at the total depth coordinates using the candidate wellbore path and the trained machine learning network.
    Type: Grant
    Filed: December 6, 2021
    Date of Patent: April 23, 2024
    Assignee: SAUDI ARABIAN OIL COMPANY
    Inventors: Ammar Alali, Mahmoud Abughaban, Victor Carlos Costa De Oliveira
  • Patent number: 11965774
    Abstract: A vibration dose measurement apparatus 10 for an operator's hand 1 comprises a sensing assembly 20 connected to a control unit 25. The sensing assembly 20 comprises an accelerometer 21, gyroscope 22, and gripping force sensor 23 and may be packaged within a protective housing (not shown). By monitoring output of the sensor assembly 20, the vibration dose experienced by the hand 1 can be estimated. In the present invention, the provision of gripping force sensor 23 allows for vibration dose measurement to be adjusted based on the output of gripping force sensor 23. This can therefore take into account the force applied by an operator in gripping machinery, which can impact significantly on the effective vibration dose.
    Type: Grant
    Filed: March 29, 2019
    Date of Patent: April 23, 2024
    Assignee: COVENTRY UNIVERSITY
    Inventors: Andrei Mihai Feraru, James Marcus Griffin
  • Patent number: 11965399
    Abstract: A geological exploration method starts by obtaining measurements and calculating properties along boreholes in an area of interest to generate log data including plural curves. Anomalies are detected along at least one curve of one of the boreholes. A machine learning regressor is trained using one or more curves without anomaly values of the one of the boreholes and/or of another similar borehole among the boreholes, to predict a synthetic curve corresponding to the at least one curve. The synthetic curve is then blended into the at least one curve.
    Type: Grant
    Filed: December 28, 2018
    Date of Patent: April 23, 2024
    Assignee: GEOSOFTWARE C.V.
    Inventors: Chiranjith Ranganathan, Joe Johnston, Frederick Jenson
  • Patent number: 11963744
    Abstract: The reliability of calculated bio-information of a subject is determined. When the reliability of the bio-information is determined to be high, the bio-information is output, whereas when the reliability of the bio-information is determined to be low, the bio-information is not output. Thus, among the calculated bio-information, only the bio-information of high reliability may be output, or distinctive display may be performed depending on the reliability, whereby it is possible to provide a bio-information output device and the like capable of easily determining bio-information of high reliability.
    Type: Grant
    Filed: July 16, 2021
    Date of Patent: April 23, 2024
    Assignee: PARAMOUNT BED CO., LTD.
    Inventors: Takamasa Kogure, Toshihide Shiino
  • Patent number: 11966210
    Abstract: A substrate processing apparatus includes a device management controller including a parts management control part configured to monitor the state of parts constituting the apparatus, a device state monitoring control part configured to monitor integrity of device data obtained from an operation state of the parts constituting the apparatus, and a data matching control part configured to monitor facility data provided from a factory facility to the apparatus. The device management controller is configured to derive information evaluating the operation state of the apparatus based on a plurality of monitoring result data selected from a group consisting of maintenance timing monitoring result data acquired by the parts management control part, device state monitoring result data acquired by the device state monitoring control part, and utility monitoring result data acquired by the data matching control part.
    Type: Grant
    Filed: February 25, 2020
    Date of Patent: April 23, 2024
    Assignee: KOKUSAI ELECTRIC CORPORATION
    Inventors: Kazuhide Asai, Kazuyoshi Yamamoto, Hidemoto Hayashihara, Takayuki Kawagishi, Kayoko Yashiki, Yukio Miyata, Hiroyuki Iwakura, Masanori Okuno, Kenichi Fujimoto, Ryuichi Kaji
  • Patent number: 11960048
    Abstract: A three-dimensional electrical resistivity tomography method and system belonging to the field of geological geophysical prospecting, the method including the steps of prospecting a region containing a geological anomaly with at least two prospecting modes respectively to acquire two-dimensional resistivity data of a corresponding detection plane; unifying coordinate systems of resistivity data points acquired in all prospecting modes, and extracting data points with the same coordinates; carrying out data fusion on extracted resistivity data at the same position by utilizing a principal component analysis method; and carrying out three-dimensional coordinate conversion on resistivity data acquired after fusion to form a three-dimensional model.
    Type: Grant
    Filed: November 17, 2020
    Date of Patent: April 16, 2024
    Assignee: SHANDONG UNIVERSITY
    Inventors: Maoxin Su, Shucai Li, Yimin Liu, Yiguo Xue, Li Guan, Peng Wang
  • Patent number: 11959740
    Abstract: A three-dimensional data creation method for use in a vehicle including a sensor and a data receiver that transmits and receives three-dimensional data to and from an external device. The three-dimensional data creation method includes: creating second three-dimensional data based on information detected by the sensor and first three-dimensional data received by the data receiver; and transmitting, to the external device, third three-dimensional data that is part of the second three-dimensional data.
    Type: Grant
    Filed: March 12, 2019
    Date of Patent: April 16, 2024
    Assignee: PANASONIC INTELLECTUAL PROPERTY CORPORATION OF AMERICA
    Inventors: Takahiro Nishi, Tadamasa Toma, Toshiyasu Sugio, Toru Matsunobu, Satoshi Yoshikawa, Tatsuya Koyama
  • Patent number: 11959963
    Abstract: Device for checking the integrity of a digital transmission for an analog output of a system. The analog output may be checked for transient errors that can be attributed to a digital transmission path embedded somewhere within the vehicle system. A test signal is introduced into a digital transmission that can be reassembled from an analog path of the analog output, and, if not, allows the test device to pinpoint that errors are appearing due to the digital path, and not because of the analog output. In this way, debugging an installation of a system becomes easier; obtaining confidence in reliability of a mixed analog and digital system becomes less of a challenge and less time consuming.
    Type: Grant
    Filed: December 12, 2022
    Date of Patent: April 16, 2024
    Assignee: Aptiv Technologies AG
    Inventors: Olaf Donner, Tammo Kunnert
  • Patent number: 11955107
    Abstract: Methods and apparatus are provided for automatically adjusting, by an audio device, the SPL of its audio output. As described herein, the SPL is adjusted based on detected ambient noise. According to aspects, audio device iteratively adjusts the SPL based on the ambient noise. According to aspects, the SPL is adjusted to be greater than the ambient noise by a threshold SPL amount. According to aspects, the audio device outputs sound in substantially a first direction and the microphone detects sound substantially outside of the first direction. The adjusted sounds are output by the audio device.
    Type: Grant
    Filed: March 15, 2022
    Date of Patent: April 9, 2024
    Assignee: BOSE CORPORATION
    Inventors: Mehul Trivedi, Vincent Lee, Cory Roberts, James P. Mulvey, Guy Anthony Torio
  • Patent number: 11953386
    Abstract: A method for estimating the junction temperature of the power semiconductor device of the power module is provided. The method includes computing a junction temperature prediction value of the first power semiconductor device based on a power loss and a thermal resistance of the first power semiconductor device and computing a junction temperature prediction value of the second power semiconductor device based on a power loss and a thermal resistance of the second power semiconductor device. A temperature prediction value of the heat sink is computed by subtracting the junction temperature prediction value of the first power semiconductor device from a sensing temperature sensed by the temperature sensor. The junction temperature of the second power semiconductor device is then finally determined by adding the temperature prediction value of the heat sink to the junction temperature prediction value of the second power semiconductor device.
    Type: Grant
    Filed: November 2, 2020
    Date of Patent: April 9, 2024
    Assignees: Hyundai Motor Company, Kia Motors Corporation
    Inventor: Je Hwan Lee
  • Patent number: 11953448
    Abstract: A method for defect inspection includes receiving a substrate having a plurality of patterns; obtaining a gray scale image of the substrate, wherein the gray scale image includes a plurality of regions, and each of the regions has a gray scale value; comparing the gray scale value of each region to a gray scale references to define a first group, a second group and an Nth group, wherein each of the first group, the second group and the Nth group has at least a region; performing a calculation to obtain a score; and when the score is greater than a value, the substrate is determined to have an ESD defect, and when the score is less than the value, the substrate is determined to be free of the ESD defect.
    Type: Grant
    Filed: April 7, 2020
    Date of Patent: April 9, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Tsun-Cheng Tang, Hao-Ming Chang, Sheng-Chang Hsu, Cheng-Ming Lin
  • Patent number: 11946772
    Abstract: The concept described herein relates to a device and a method for determining the transfer function of an angle sensor in the course of operation. For this purpose, a sequence of angle output signals of the angle sensor is received during at least one time interval in which the angle sensor is exposed to a rotating magnetic field. Furthermore, the transfer function of the angle sensor is determined on the basis of the sequence of angle output signals. The method can be carried out during regular operation of the angle sensor.
    Type: Grant
    Filed: October 9, 2020
    Date of Patent: April 2, 2024
    Assignee: Infineon Technologies AG
    Inventor: Benjamin Kollmitzer
  • Patent number: 11940392
    Abstract: Techniques that facilitate a measurement scheme for superconducting qubits using low-frequency microwave signals within a dilution refrigerator are provided. In one example, a cryogenic microwave system for measuring superconducting qubits using microwave signals includes a dilution refrigerator system for a quantum processor. The dilution refrigerator system converts a microwave signal associated with qubit information into a reduced-frequency microwave signal based on a Josephson-mixer circuit located within the dilution refrigerator system. The reduced-frequency microwave signal includes a frequency below a qubit frequency and a readout resonator frequency associated with the quantum processor.
    Type: Grant
    Filed: April 18, 2019
    Date of Patent: March 26, 2024
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventor: Baleegh Abdo
  • Patent number: 11940589
    Abstract: Turning points in stratigraphy (TPS) can be determined, which then can be used to improve the representation of the borehole path in relation to layers of the subterranean formation. The TPS can be determined by analyzing each directional survey point in relation to the nearest layer of the subterranean formation. In determining which layer is the nearest layer, the process can analyze the layer type, such as conformable or unconformable, whether a fault intersects the borehole, the angle of the layer in relation to the borehole path, or whether the true stratigraphic thickness (TST) changes from one of a positive parameter or negative parameter to the other. The generated TPS can be used by a system as input or can be displayed for a user where the segmented borehole path can be aligned using the calculated TST to improve the ability of the user to analyze the representation.
    Type: Grant
    Filed: June 29, 2022
    Date of Patent: March 26, 2024
    Assignee: Landmark Graphics Corporation, Inc.
    Inventors: Alice Butt, Mykhailo Ponomarev, Einar Mageroy
  • Patent number: 11938303
    Abstract: Techniques disclosed herein relate to determining a calibrated measurement value indicative of a physiological condition of a patient using sensor calibration data and a performance model. In some embodiments, the techniques involve obtaining one or more electrical signals from a sensing element of a sensing arrangement, where the one or more electrical signals are influenced by a physiological condition in a body of a patient. The techniques also involve obtaining calibration data associated with the sensing element from a data storage element of the sensing arrangement, converting the one or more electrical signals into one or more calibrated measurement parameters using the calibration data, obtaining a performance model associated with the sensing element, obtaining personal data associated with the patient, and determining, using the performance model and based on the personal data and the one or more calibrated measurement parameters, a calibrated output value indicative of the physiological condition.
    Type: Grant
    Filed: December 14, 2022
    Date of Patent: March 26, 2024
    Assignee: MEDTRONIC MINIMED, INC.
    Inventors: Steven C. Jacks, Peter Ajemba, Akhil Srinivasan, Jacob E. Pananen, Sarkis Aroyan, Pablo Vazquez, Tri T. Dang, Ashley N. Sullivan, Raghavendhar Gautham
  • Patent number: 11940417
    Abstract: A flexural wave absorption system detects, with a sensor attached to a beam, an incident wave propagating in the beam. The system determines, based on a signal from the sensor generated in response to the incident wave, an amplitude and phase of the incident wave propagating in the beam and controls an actuator connected to the beam to generate a suppression wave, based on the amplitude and the phase of the incident wave, that reduces a coefficient of reflection of the incident wave across a broadband frequency range.
    Type: Grant
    Filed: February 2, 2021
    Date of Patent: March 26, 2024
    Assignee: Toyota Motor Engineering & Manufacturing North America, Inc.
    Inventors: Xiaopeng Li, Taehwa Lee, Hideo Iizuka, Danil V. Prokhorov
  • Patent number: 11933931
    Abstract: A method includes obtaining a plurality of master sensor responses with a master sensor in a set of training fluids and obtaining node sensor responses in the set of training fluids. A linear correlation between a compensated master data set and a node data set is then found for a set of training fluids and generating node sensor responses in a tool parameter space from the compensated master data set on a set of application fluids. A reverse transformation is obtained based on the node sensor responses in a complete set of calibration fluids. The reverse transformation converts each node sensor response from a tool parameter space to the synthetic parameter space and uses transformed data as inputs of various fluid predictive models to obtain fluid characteristics. The method includes modifying operation parameters of a drilling or a well testing and sampling system according to the fluid characteristics.
    Type: Grant
    Filed: May 8, 2020
    Date of Patent: March 19, 2024
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Dingding Chen, Bin Dai, Christopher M. Jones, Darren Gascooke, Tian He
  • Patent number: 11931636
    Abstract: An evaluation method for evaluating a swing characteristic of a subject with respect to a flying and thus coming object, includes: calculating swing information corresponding to a motion characteristic of the object based on sensor data detected by at least one of a first sensor attached to a ball hitting tool or a back of a hand of the subject and a second sensor attached to a waist of the subject when the subject swings the ball hitting tool with respect to the object; classifying a plurality of pieces of such swing information into a plurality of groups based on the motion characteristic of the object; for each of the plurality of groups, extracting representative swing information in the group based on one or more pieces of swing information belonging to the group; and evaluating a swing characteristic of the subject based on the representative swing information of each group.
    Type: Grant
    Filed: July 27, 2020
    Date of Patent: March 19, 2024
    Assignee: Mizuno Corporation
    Inventors: Noriyuki Tabuchi, Kohei Mimura
  • Patent number: 11927501
    Abstract: The invention concerns a method for monitoring a gear system (1) comprising at least two wheels, each wheel having a characteristic frequency (f1, f2), a vibratory or acoustic signal representative of these vibrations having been acquired by a sensor (21), a vibratory or acoustic digital signal x(t) having been obtained, the method comprising, for each characteristic frequency of the system (1), the steps of filtering (E1) the digital signal by means of a filter in such a way as to obtain an image monitoring signal of at least one vibratory component of at least one defect; determining (E3) the square envelope of said monitoring signal, defined by the square absolute value of the Hilbert transform of the monitoring signal so as to extract an image of the modulating signals associated with the rotation of the wheels from the monitoring signal; determining (E4) the synchronous average of said square envelope relative to the period of rotation of a wheel of interest chosen from the wheels of the gear, said avera
    Type: Grant
    Filed: April 19, 2019
    Date of Patent: March 12, 2024
    Assignee: SAFRAN
    Inventors: Dany Abboud, Mohamed El Badaoui, Yosra Marnissi