Patents Examined by Nathan Curs
  • Patent number: 9680573
    Abstract: An optical transceiver includes a main board, a fiber joint, a circuit board, a transfer board, metal traces, photoelectric elements, a lens set, a connection base, and an amplifier. The fiber joint is coupled to the lens set and connection base for positioning plural optical fibers. The connection base is coupled to the main board, and the circuit board is electrically connected to the main board. The transfer board is disposed between the fiber joint and circuit board. Each of the metal traces is arranged on both of two neighboring surfaces of the transfer board. The photoelectric elements are respectively coupled to metal traces on the surface of the transfer board facing the fiber joint, and axially aim to the optical fibers, respectively. The amplifier electrically connects the circuit board and the photoelectric elements via the metal traces.
    Type: Grant
    Filed: October 20, 2014
    Date of Patent: June 13, 2017
    Assignee: OptoMedia Technology Inc.
    Inventor: Tung-Lou Lin
  • Patent number: 9680598
    Abstract: A wavelength division multiplexing optical transmission apparatus includes a plurality of polarization multiplexing optical modulation means, polarization-maintaining optical multiplexing means, and delay adjustment means. The polarization multiplexing optical modulation means generate a plurality of polarization multiplexed optical modulation signals having different wavelengths. The polarization-maintaining optical multiplexing means multiplexes the wavelengths of the polarization multiplexed optical modulation signals to generate a wavelength multiplexed optical signal (WDM). The delay adjustment means adjusts a delay such that light intensities of polarization multiplexed optical modulation signals having adjacent wavelengths in the wavelength multiplexed optical signal (WDM) vary inversely with respect to each other.
    Type: Grant
    Filed: October 18, 2013
    Date of Patent: June 13, 2017
    Assignee: NEC Corporation
    Inventor: Yoshihisa Inada
  • Patent number: 9681209
    Abstract: One embodiment provides an apparatus for coupling a trunk network to a plurality of leaf passive optical networks (PONs). The apparatus includes one or more uplink ports for coupling to the trunk network, a plurality of downlink ports with a respective downlink port coupled to a leaf PON, and a switch chip for interconnecting the uplink ports and the downlink ports. The switch chip acts as a simple Ethernet switch with no traffic control ability.
    Type: Grant
    Filed: August 12, 2015
    Date of Patent: June 13, 2017
    Assignee: TIBIT COMMUNICATIONS, INC.
    Inventor: Edward W Boyd
  • Patent number: 9660727
    Abstract: Disclosed are methods, systems, devices, apparatus, computer-/processor-readable media, and other implementations, including a method to decode a visible light communication (VLC) signal by capturing images of a light source emitting a light modulated signal comprising a temporal sequence of symbols to determine decoded symbols and to further determine at least one codeword from a list of candidate codewords.
    Type: Grant
    Filed: August 21, 2015
    Date of Patent: May 23, 2017
    Assignee: QUALCOMM Incorporated
    Inventors: Aleksandar Jovicic, Mahadevi Pillai Perumal, Kenneth Vavreck
  • Patent number: 9628172
    Abstract: A method, in a node operating in a network with a control plane, to optimize wavelength retuning on service redials, includes detecting a failure on a link associated with the node; and, for each affected connections on the link, sending a respective release message to an associated originating node via the control plane, the release message including a protect path and a wavelength, wherein the release message is utilized by the associated originating node to redial the affected connections with the protect path and the wavelength determined by the node, to minimize wavelength retuning on the affected connections.
    Type: Grant
    Filed: November 26, 2014
    Date of Patent: April 18, 2017
    Assignee: Ciena Corporation
    Inventors: Anurag Prakash, Mohit Chhillar, Gerard Leo Swinkels
  • Patent number: 9628185
    Abstract: Described herein is an optical transmitter that includes an RF signal path that is, at least partially, parallel with an optical signal path. In one embodiment, an electrical transmission element, which defines the RF signal path, is disposed between a laser emitting the optical signal and a side wall of a package containing the optical transmitter. Although the RF and optical signals may propagate along different planes within the optical transmitter, both signals are received at an optical modulator. Using the RF signal, the optical modulator modulates the optical signal (e.g., a continuous wave) to generate a modulated optical signal. The optical modulator then outputs the modulated signal to a receptacle coupled to a light carrying medium such as a fiber optic cable.
    Type: Grant
    Filed: October 17, 2014
    Date of Patent: April 18, 2017
    Assignee: Cisco Technology, Inc.
    Inventors: Stefan Martin Pfnuer, Matthew Joseph Traverso
  • Patent number: 9621261
    Abstract: The invention refers a method and an arrangement for channel set up in an optical network. An optical signal path is configured for a certain optical channel signal (OC1) of a WDM-signal. This channel signal (OC1) is on-off-modulated by a modulation test signal (MT1) having a predetermined lower frequency and is generating a channel test signal (OT1). This channel test signal (OT1) is combined with other optical channels (OC2-OCn) to the WDM-signal (WS) and transmitted via said path. At a start node (1) or a downstream node (3, 5) a measurement signal (EMI, EM3) is derived from the complete WDM-signal (WS) without wavelength de-multiplexing. The measurement signal (EMI, EM3) is compared with a correlation signal (MC1) and an obtained power level (PC1) is used to adjust the channel power (PC1, PC2, PC3) to achieve predetermined target power values (PC1-PC4) at different power monitoring points (19, 40, 41, 58).
    Type: Grant
    Filed: July 26, 2012
    Date of Patent: April 11, 2017
    Assignee: Xieon Networks S.a.r.l.
    Inventors: Benoit Clouet, Anton Schex
  • Patent number: 9614636
    Abstract: A receiver optical module that receives a wavelength multiplexed signal is disclosed. The receiver optical module includes an optical de-multiplexer that generates a plurality of signals contained in the wavelength multiplexed signal depending on wavelengths of the signals. The wavelength de-multiplexer has features that the optical de-multiplexer has a plurality of sub-elements stacked to each other, where each of the sub-elements de-multiplexes a portion of the wavelength multiplexed signal. Or, the optical de-multiplexer has a series of wavelength selective filters each extracting signal components having outermost wavelengths from signal components entering therein.
    Type: Grant
    Filed: August 21, 2014
    Date of Patent: April 4, 2017
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventor: Fumihiro Nakajima
  • Patent number: 9614625
    Abstract: In a visible light communication system including a transmission device and a receiving device arranged separately in a vertical direction and provided so as to relatively move in a horizontal direction, which transmits data from the transmission device to the receiving device by optical space transmission using visible light, the transmission device includes a first light emitting part outputting visible light, and the first light emitting part has a light source emitting visible light and a correction part correcting the light radiated from the light source so as to uniform a light intensity distribution on a horizontal plane. Even when the transmission device and the receiving device arranged separately in the vertical direction relatively move in a horizontal direction, data can be stably transmitted and received by the optical space transmission using visible light.
    Type: Grant
    Filed: October 23, 2013
    Date of Patent: April 4, 2017
    Assignees: Kawasaki Jukogyo Kabushiki Kaisha, Daitron Technology Co., Ltd.
    Inventors: Noriyuki Okaya, Minehiko Mukaida, Takashi Koyabu, Masaki Hori
  • Patent number: 9608723
    Abstract: System and method embodiments are provided for carrier-signal power ratio (CSPR) control in direct detection optical systems. In an embodiment, a method for CSPR control in a direct detection optical system includes receiving an electrical signal in a receiver (RX) digital signal processor (DSP), wherein the electrical signal is obtained from a corresponding optical signal via a direct detection component; estimating, a CSPR for the electrical signal; generating one of a control signal according to the CSPR; and transmitting the control signal to one of an optical filter and a laser, wherein the wavelength control signal controls causes a center wavelength (CW) of one of the optical filter and the laser to be adjusted such that an offset between the CW of the laser and the CW of the optical filter results in a desired CSPR.
    Type: Grant
    Filed: October 20, 2014
    Date of Patent: March 28, 2017
    Assignee: HUAWEI TECHNOLOGIES CO., LTD.
    Inventors: Chen Chen, Chuandong Li, Zhuhong Zhang
  • Patent number: 9608727
    Abstract: In a transmitting method that enables communication between various devices including devices other than lightings, a luminance change pattern is determined by modulating a visible light signal, a common switch for turning ON, in common, a plurality of light sources which are included in a light source group of a display and are each used for representing a pixel in an image is switched according to the luminance change pattern, and a first pixel switch for turning ON a first light source among the plurality of light sources included in the light source group is turned ON, to cause the first light source to be ON only for a period in which the common switch is ON and the first pixel switch is ON, to transmit the visible light signal.
    Type: Grant
    Filed: December 18, 2015
    Date of Patent: March 28, 2017
    Assignee: PANASONIC INTELLECTUAL PROPERTY CORPORATION OF AMERICA
    Inventors: Hideki Aoyama, Mitsuaki Oshima, Koji Nakanishi, Toshiyuki Maeda, Akihiro Ueki, Kengo Miyoshi, Tsutomu Mukai
  • Patent number: 9608725
    Abstract: An information processing program causes a computer to execute: encoding information to be transmitted, to determine a luminance change frequency; and outputting a signal of the determined luminance change frequency to cause a light emitter to change in luminance according to the determined luminance change frequency to transmit the information. In the encoding, each of a first frequency and a second frequency different from the first frequency is determined as the luminance change frequency. In the outputting, each of a signal of the first frequency and a signal of the second frequency is output as the signal of the determined luminance change frequency, to cause the light emitter to change in luminance according to the first frequency during a first time and change in luminance according to the second frequency during a second time different from the first time after the first time elapses.
    Type: Grant
    Filed: December 24, 2014
    Date of Patent: March 28, 2017
    Assignee: PANASONIC INTELLECTUAL PROPERTY CORPORATION OF AMERICA
    Inventors: Hideki Aoyama, Mitsuaki Oshima, Koji Nakanishi, Toshiyuki Maeda, Akihiro Ueki, Kengo Miyoshi, Tsutomu Mukai
  • Patent number: 9602898
    Abstract: Embodiments relate to providing simultaneous digital and analog services in optical fiber-based distributed radio frequency (RF) antenna systems (DASs), and related components and methods. A multiplex switch unit associated with a head-end unit of a DAS can be configured to receive a plurality of analog and digital downlink signals from one or more sources, such as a service matrix unit, and to assign each downlink signal to be transmitted to one or more remote units of the DAS. In one example, when two or more downlink signals are assigned to be transmitted to the same remote unit, a wave division multiplexer/demultiplexer associated with the multiplex switch unit can be configured to wave division multiplex the component downlink signals into a combined downlink signal for remote side transmission and to demultiplex received combined uplink signals into their component uplink signals for head-end side transmission.
    Type: Grant
    Filed: August 11, 2015
    Date of Patent: March 21, 2017
    Assignee: Corning Optical Communications Wireless Ltd
    Inventors: William Patrick Cune, Ofer Saban, Isaac Shapira
  • Patent number: 9596034
    Abstract: The present disclosure describes systems and methods for beam wavelength stabilization and output beam combining in dense wavelength multiplexing (DWM) systems. Systems and methods are described for performing beam wavelength stabilization and output beam combining in DWM systems while achieving increased wall-plug efficiency and enhanced beam quality. Interferometric external resonator configurations can be used to greatly increase the brightness of DWM system output beams by stabilizing the wavelengths of the beams emitted by the emitters of the DWM laser source. The resonant cavities described by the present disclosure provide advantages over the prior art in the form of decreased cost, increased wall plug efficiency and increased output beam quality. Particular implementations of the disclosure achieve increased wall plug efficiency and increased output beam quality through a combination of innovative cavity designs and the utilization of reflection diffraction elements for beam combining.
    Type: Grant
    Filed: June 3, 2016
    Date of Patent: March 14, 2017
    Assignee: TRUMPF LASER GMBH
    Inventors: Hagen Zimer, Alexander Killi, Christoph Tillkorn, Steffen Ried
  • Patent number: 9590833
    Abstract: A dual-polarization, 2-subcarriers code orthogonal, orthogonal frequency division multiplexed signal carrying information bits is transmitted in an optical communication network without transmitting a corresponding pilot tone or training sequence. A receiver receives the transmitted signal and recovers information bits using a blind equalization technique and by equalizing the 2-subcarriers OFDM signal as a 9-QAM signal in time domain with a CMMA (constant multi modulus algorithm) equalization method.
    Type: Grant
    Filed: August 6, 2014
    Date of Patent: March 7, 2017
    Assignee: ZTE Corporation
    Inventors: Jianjun Yu, Fan Li
  • Patent number: 9571190
    Abstract: A system that incorporates teachings of the subject disclosure may include, for example, a central controller that executes instructions facilitating performance of operations including monitoring multiple network nodes, at least some of the network nodes being in communication with others through respective point-to-point links. Each point-to-point link includes a respective free space optical channel. The central controller detects optical received signal strength of a free space optical channel falling below a certain level and provides control signals to reconfigure the multiple network nodes. Signals are re-routed along one of the respective point-to-point links through other network nodes responsive to detecting the optical received signal strength falling below the certain level Other embodiments are disclosed.
    Type: Grant
    Filed: February 25, 2014
    Date of Patent: February 14, 2017
    Assignee: AT&T Intellectual Property II, LP
    Inventors: David M. Britz, Jeevan Dodley, Lih-Yuan Lin, Robert R. Miller
  • Patent number: 9571191
    Abstract: An information communication method of transmitting a signal using a change in luminance is provided. The information communication method includes: determining a pattern of the change in luminance, by modulating the signal to be transmitted; and transmitting the signal, by at least one light emitter changing in luminance according to the determined pattern of the change in luminance. In the determining, a first luminance change pattern corresponding to a body, a second luminance change pattern indicating a header for specifying the body, and a third luminance change pattern indicating another header different from the header are determined. In the transmitting, the header, the body and the other header are transmitted by the at least one light emitter changing in luminance according to the first luminance change pattern, the second luminance change pattern, the first luminance change pattern and the first luminance change pattern in the stated order.
    Type: Grant
    Filed: August 11, 2016
    Date of Patent: February 14, 2017
    Assignee: PANASONIC INTELLECTUAL PROPERTY CORPORATION OF AMERICA
    Inventors: Mitsuaki Oshima, Koji Nakanishi, Hideki Aoyama, Ikuo Fuchigami, Hidehiko Shin, Tsutomu Mukai, Yosuke Matsushita, Shigehiro Iida, Kazunori Yamada
  • Patent number: 9564974
    Abstract: An optical transmission device for transmitting and receiving a multilevel-modulated optical signal includes a plurality of transmission frame processors for generating transmission frame signals accommodating a plurality of client signals that are each subjected to error correction processing and scrambling/descrambling processing, and a digital modulator/demodulator for mapping the transmission frame signals that are input to and output from the plurality of transmission frame processors to a multilevel signal. The digital modulator/demodulator performs digital modulation/demodulation, in which the plurality of transmission frame processors each have a function of shifting a phase of a pattern between a plurality of transmission frames to be mapped to a multilevel signal and to be digitally modulated/demodulated.
    Type: Grant
    Filed: February 20, 2014
    Date of Patent: February 7, 2017
    Assignee: Mitsubishi Electric Corporation
    Inventors: Yoshiaki Konishi, Kazuo Kubo
  • Patent number: 9560427
    Abstract: Hybrid dilated Benes photonic switching architectures employ an arrangement of two-by-one (2×1) photonic and two-by-two (2×2) photonic elements to enjoy improved cross-talk performance while maintaining moderate cell counts. A jumpsuit switch optical network node architecture comprising multiple stages may operate more efficiently than single stage switching fabrics, by enabling manipulation of connectivity in some stages to achieve load balancing over other stages. Specifically, a first stage of switching fabrics connected to input ports of the optical node may be manipulated to load balance incoming signals over a second stage of switching fabrics coupled to output ports of the optical node. Additionally, a third stage of switching fabrics connected to add ports of the optical node may be manipulated to load balance added optical signals over the second stage of switching fabrics.
    Type: Grant
    Filed: May 28, 2014
    Date of Patent: January 31, 2017
    Assignee: Huawei Technologies Co., Ltd.
    Inventor: Hamid Mehrvar
  • Patent number: 9538264
    Abstract: An Optical channel Data Unit flex (ODUflex) resizing method, node, and network include determining that the ODUflex needs resizing, wherein the ODUflex is configured in the network on a current path between the node and a second node in the network; when the resizing is a decrease, reducing a size of the ODUflex by i) a resize decrease operation using a control plane or ii) a Link Aggregation Group and Make-Before-Break operation; and, when the resizing is an increase, increasing a size of the ODUflex by i) a resize increase operation using a control plane or ii) a Link Aggregation Group and Make-Before-Break operation. The method provides hitless resizing without using ITU Recommendation G.7044/Y.1347 (10/11) and can perform the reducing or the increasing changing bandwidth of the ODUflex by approximately 100 G in less than a second.
    Type: Grant
    Filed: September 18, 2014
    Date of Patent: January 3, 2017
    Assignee: Ciena Corporation
    Inventors: Steven Arvo Surek, Jeffery Thomas Nichols, Jeffrey Scott Moynihan, Mohit Chhillar, Anurag Prakash, Alexander Gurd Young