Patents Examined by Nicole F Lavert
  • Patent number: 11974854
    Abstract: The present disclosure describes cardiac mapping techniques that find particular use in assessing fibrillation, and which also improve the ability to correctly identify local activation time from signals in any rhythm.
    Type: Grant
    Filed: July 19, 2021
    Date of Patent: May 7, 2024
    Assignee: CoreMap, Inc.
    Inventors: Peter S. Spector, Sarah Kalil, Daniel Klebanov
  • Patent number: 11968502
    Abstract: According to an embodiment, a medical device is disclosed. The medical device includes an external unit and an implantable unit. The external unit includes an electronic unit operationally coupled to a transmitter coil that is configured transmit power and/or data signal over a wireless transcutaneous link, a coil unit comprising a loop structure with the transmitter coil being wound around and along at least a part of length of the loop structure, and a fixation unit configured to attach the loop structure to a user's body i) proximal to an implantable receiver coil that is configured to be implanted within a body part, and ii) around a body part of a user such that a part of the body part is positioned in a hollow section of the loop structure.
    Type: Grant
    Filed: July 9, 2021
    Date of Patent: April 23, 2024
    Assignee: Oticon Medical A/S
    Inventor: Bengt Bern
  • Patent number: 11957396
    Abstract: Devices, systems, and methods for maintaining cryoballoon size, cryoballoon pressure, and/or coolant flow rate based on physical characteristics of the tissue to be ablated. In one embodiment, a cryoablation system comprises: a cryoablation device, the cryoablation device including: an expandable treatment element defining an interior chamber; and a pressure sensing system at least partially within the interior chamber; a fluid flow path including at least one valve that is in communication with at least one PID device; and a control unit including processing circuitry in communication with the pressure sensing system and the at least one PID device, the processing circuitry being configured to: determine a target pressure of the expandable treatment element based on a target size of the expandable treatment element; and determine a target flow rate of coolant through the fluid flow path based on the target pressure of the expandable treatment element.
    Type: Grant
    Filed: April 2, 2020
    Date of Patent: April 16, 2024
    Assignee: Medtronic CryoCath LP
    Inventors: Jean-Pierre Lalonde, Wlodzimierz Sadzynski, Nicolas Coulombe
  • Patent number: 11957429
    Abstract: In some embodiments, a hand controller apparatus for controlling a tool in a robotic surgery system can include a body with a proximal end and a distally located interface end configured to be coupled to an input apparatus configured to control the tool. The hand controller apparatus can also include a control lever attached to a pivot joint proximate a side surface of the body and extending along the body and away from the proximal end, the control lever being laterally moveable relative to the side surface of the body about the pivot joint. The hand controller apparatus can additionally include a lateral movement detector configured to magnetically or inductively detect a lateral movement of the control lever.
    Type: Grant
    Filed: May 27, 2021
    Date of Patent: April 16, 2024
    Assignee: Titan Medical Inc.
    Inventors: Brandon Michael Kelly, Michael Darter Collins, Zachary Kevin Durand, William Jacob Ward, Mark Curtis Rector
  • Patent number: 11950924
    Abstract: Embodiments of the present systems and methods may relate to a non-invasive system with diagnostic and treatment capacities that use a unified code that is intrinsic to physiological brain function. For example, in an embodiment, a computer-implemented method for affecting living neural tissue may comprise receiving at least one signal from at least one read modality, the signal representing release of photons from mitochondria of the living neural tissue, computing at least one signal to effect alterations to the living neural tissue based on the received input signal, the computed signal adapted to cause transmission of photons to the living neural tissue, and delivering the photons to the living neural tissue to effect alterations to the living tissue.
    Type: Grant
    Filed: April 13, 2020
    Date of Patent: April 9, 2024
    Inventor: Newton Howard
  • Patent number: 11944809
    Abstract: Systems and methods are provided for treating chronic pain occurring secondarily to subacromial impingement syndrome in a human body. A system is provided to deliver percutaneous electrical stimulation through at least one electrode to neurological motor points of the posterior and middle deltoid muscles to mediate such pain. One-time, continued and/or periodic dosing of treatment methods according to the present invention may result in a change to central nervous system maladaptive neuroplasticity.
    Type: Grant
    Filed: December 18, 2020
    Date of Patent: April 2, 2024
    Assignee: SPR Therapeutics, Inc.
    Inventors: Maria E. Bennett, Joseph W. Boggs, II, John Chae
  • Patent number: 11944461
    Abstract: Systems and methods are described herein for generating representative cardiac information. The representative cardiac information may be based on a plurality of electrode signals monitored, or measured, over a plurality of cardiac cycles or heart beats. The systems and methods may remove unqualified cardiac cycles, remove invalid electrode signals, remove inconsistent cardiac cycles, and removing uncorrelated cardiac cycles, and then generate representative cardiac information based on the remaining cardiac cycles and electrode signals.
    Type: Grant
    Filed: November 30, 2020
    Date of Patent: April 2, 2024
    Assignee: Medtronic, Inc.
    Inventors: Subham Ghosh, Karen J. Kleckner, Marc C. Steckler, Trent M. Fischer, Daniel S. Flo
  • Patent number: 11944406
    Abstract: A wearable arrhythmia monitoring and treatment device for improving confidence in determined arrhythmias prior to treatment includes a plurality of sensing electrodes, one or more therapy electrodes, and an electrode signal acquisition circuit having a plurality of inputs. The electrode signal acquisition circuit is configured to sense a respective signal provided by each of a plurality of different pairings of the plurality of sensing electrodes. The wearable arrhythmia monitoring and treatment device includes a monitoring and detection circuit including at least one processor configured to analyze the respective signals provided by each of the plurality of different pairings of the plurality of sensing electrodes, change a confidence level in a determined arrhythmia condition based on the respective signals provided by the plurality of different pairings of the plurality of sensing electrodes, and initiate a therapy to the patient via the one or more therapy electrodes based on the confidence level.
    Type: Grant
    Filed: March 19, 2021
    Date of Patent: April 2, 2024
    Assignee: ZOLL MEDICAL CORPORATION
    Inventors: Thomas E Kaib, Shane S Volpe, John D Macho
  • Patent number: 11944459
    Abstract: A system including a means for estimating the residual noise level in electrocardiogram (ECG) signals is disclosed. The disclosed system and methods may be used in an electrocardiograph devices. According to an exemplary embodiment of the present invention, a plurality of electrodes positioned in proximity to a cardiac structure may measure an electrical signal of the cardiac structure to produce the ECG signal. The system may segment the ECG signal into a plurality of segments. For each of the plurality of segments, the linear trend energy and/or direct current (DC) energy may be removed from the segment, and the estimated noise energy of the segment may be calculated. A subset of the plurality of segments with a minimum estimated noise energy may be selected. The residual noise energy of the ECG signal may be estimated by calculating an average of the estimated noise energy over the subset of segments.
    Type: Grant
    Filed: December 31, 2019
    Date of Patent: April 2, 2024
    Assignee: Biosense Webster (Israel) Ltd.
    Inventor: Lior Botzer
  • Patent number: 11937947
    Abstract: The present invention provides a circuitry of a biopotential acquisition system, where the circuitry includes an input node, an ETI transmitter, a capacitor and an ETI receiver. The input node is configured to receive an input signal from an electrode of the biopotential acquisition system. The ETI transmitter is configured to generate a transmitter signal. A first node of the capacitor is coupled to the ETI transmitter, and a second node of the capacitor is coupled to the input node. The ETI receiver is coupled to the input node, and is configured to receive the transmitter signal via the capacitor to generate an ETI.
    Type: Grant
    Filed: April 1, 2021
    Date of Patent: March 26, 2024
    Assignee: MEDIATEK INC.
    Inventor: Chih-Hsin Chen
  • Patent number: 11940765
    Abstract: Disclosed within is a closed loop controller having: (a) a signal processing and statistics subsystem sampling an input data stream from at least one sensor, calculating real-time continuous statistics in the input data stream based on a sliding window technique, and outputting one or more classifications based on the real-time statistics; and (b) an intelligent fuzzy logic controller receiving the one or more classifications from the signal processing and statistics subsystem, accessing a heuristic rule set based on expert knowledge, and outputting a noninvasive stimulation pattern based on the one or more classifications and the heuristic rule set.
    Type: Grant
    Filed: April 16, 2020
    Date of Patent: March 26, 2024
    Assignee: Electro Standards Laboratories
    Inventors: Brandon M Sepe, Raymond B Sepe, Jr., Steven P Bastien
  • Patent number: 11938320
    Abstract: Estimating a nerve-to-electrode distance involves applying a stimulus from a stimulus electrode to a nerve. Neural measurements of at least one evoked compound action potential are obtained, and processed in order to estimate an originating state of stimulation exhibiting at least one characteristic defined by a single fibre size. A single fibre model is then applied to produce a measure of the nerve-to-electrode distance. Also provided for is estimation of a distribution of recruited fibres. Measurements of a compound action potential are obtained from sense electrodes spaced apart along a neural pathway. A conduction velocity of the compound action potential is determined from the latency between the measurements. From the conduction velocity a dominant recruited fibre diameter is determined. A rate of dispersion of the compound action potential between the sense electrodes is determined. From the rate of dispersion a distribution of diameters of the recruited fibre population is determined.
    Type: Grant
    Filed: December 14, 2020
    Date of Patent: March 26, 2024
    Assignee: Saluda Medical Pty Ltd
    Inventor: John Louis Parker
  • Patent number: 11925378
    Abstract: An ultrasonic surgical device is disclosed including a surgical tool including a proximal transducer mounting portion defining a surface, a distal end effector end, and a waveguide disposed therebetween, the waveguide extending along a longitudinal axis. The ultrasonic surgical device further includes a transducer is in mechanical communication with the surface of the transducer mounting portion. The transducer is configured to operate in a D31 mode with respect to the longitudinal axis of the waveguide. Upon activation by an electrical signal having a predetermined frequency component, the transducer is configured to induce a standing wave in the surgical tool to cause the end effector to vibrate, the standing wave having a wavelength proportional to the predetermined frequency component of the electrical signal.
    Type: Grant
    Filed: July 31, 2019
    Date of Patent: March 12, 2024
    Assignee: Cilag GmbH International
    Inventors: Jeffrey D. Messerly, Brian D. Black, William A. Olson, Foster B. Stulen, Frederick Estera, William E. Clem, Jerome R. Morgan, Jeffrey L. Aldridge, Stephen M. Leuck, Kevin L. Houser
  • Patent number: 11925467
    Abstract: Various embodiments are described herein for a system and a method for assessing a risk of ventricular arrhythmias for a patient. For example, the method may comprise receiving ECG data obtained from the patient; analyzing the ECG data to detect abnormal QRS peaks; determining the risk of ventricular arrhythmias for the patient based on the detected abnormal QRS peaks; and providing an indication of the risk of ventricular arrhythmias for the patient. The system may be configured to perform this method.
    Type: Grant
    Filed: April 30, 2019
    Date of Patent: March 12, 2024
    Assignee: University Health Network
    Inventors: Vijay Singh Chauhan, Adrian Michael Suszko
  • Patent number: 11918310
    Abstract: Methods, apparatuses, and systems for performing robotic surgery in an extended-reality (XR) surgical simulation environment are disclosed. A patient anatomical model is generated. An XR surgical simulation environment is generated that includes the patient anatomical model. The XR surgical simulation environment is configured to enable the user to virtually perform surgical steps on the patient anatomical model. Anatomical mapping input is received from a user viewing the patient anatomical model. Confidence-score augmented-reality (AR) mapping is performed to meet a confidence threshold for a procedure to be performed on the patient. A portion of the received anatomical mapping data is selected for AR mapping to an anatomy of the patient. The selected anatomical mapping data is mapped to corresponding anatomical features. An AR environment is displayed to the user, wherein the AR environment includes the mapping of the selected anatomical mapping data to the corresponding anatomical features.
    Type: Grant
    Filed: February 6, 2023
    Date of Patent: March 5, 2024
    Assignee: IX Innovation LLC
    Inventors: Jeffrey Roh, Justin Esterberg
  • Patent number: 11896358
    Abstract: A skin impedance measuring device and method includes: an electrode system having at least two electrodes placed on the skin; an adjustable voltage output unit to generate forward and reverse voltages on the electrodes; a skin impedance measurement unit to measure electrical signals from the electrodes; a central processing unit and a computing memory for calculating forward and reverse skin impedances, determining whether the measurement results are abnormal, and correcting abnormal results by delivering additional DC or AC voltages of adjustable magnitudes and frequencies based on impedances; and a display unit.
    Type: Grant
    Filed: May 11, 2020
    Date of Patent: February 13, 2024
    Assignee: Wellness Allied Inc
    Inventors: Weihui Li, Tao Zhang
  • Patent number: 11896387
    Abstract: Described herein are methods, devices, and systems that use electrogram (EGM) or electrocardiogram (ECG) data for sleep apnea detection. An apparatus and method detect potential apnea events (an apnea or hypopnea event) using a signal indicative of cardiac electrical activity of a patient's heart, such as an EGM or ECG. Variations in one or more morphological or temporal features of the signal over several cardiac cycles are determined and used to detect a potential apnea event in a measurement period. Checks can then be made for a number of factors which could result in a false detection of an apnea event and if such factors are not present, an apnea event is recorded. Described herein are also methods, devices, and systems for classifying a patient as being asleep or awake, which can be used to selectively enable and disable sleep apnea detection monitoring, as well as in other manners.
    Type: Grant
    Filed: April 20, 2021
    Date of Patent: February 13, 2024
    Assignee: Pacesetter, Inc.
    Inventors: Jong Gill, Prakrit Shrestha, Kyungmoo Ryu
  • Patent number: 11890102
    Abstract: An externally worn cardiac monitoring and/or treatment system with battery detachment detection is provided. The system includes detachment circuitry and audible and/or vibrational alarm circuitry operably coupled to the detachment circuitry. The detachment circuitry is configured to detect whether the rechargeable battery is detached from the battery-powered externally worn cardiac device by monitoring a connection established between the rechargeable battery and the at least one processor and output a battery status signal indicating whether the rechargeable battery is detached from the battery-powered externally worn cardiac device. The audible and/or vibrational alarm circuitry is configured to receive the battery status signal and output an audible alert in a predetermined frequency range and/or a tactile alert if the rechargeable battery is detached.
    Type: Grant
    Filed: October 1, 2020
    Date of Patent: February 6, 2024
    Assignee: ZOLL Medical Corporation
    Inventors: James A. Patterson, III, Nathan J. Berry Ann, Sean M. Nickel
  • Patent number: 11890108
    Abstract: In embodiments, devices, methods and systems to analyze the different mediums of brain function in a mathematically uniform manner may be provided. These devices, methods and systems may manifest at several levels and ways relating to brain physiology, including neuronal activity, molecular chirality and frequency oscillations. For example, in an embodiment, a computer-implemented method for determining structure of living neural tissue may comprise receiving at least one signal from at least one read modality, the signal representing at least one physical condition of the living neural tissue, determining action potentials based on the signals received from the read modalities, determining frequency oscillations based on the signals received from the read modalities and the action potentials, and determining neuron network structures based on the signals received from the read modalities, the action potentials, and the frequency oscillations.
    Type: Grant
    Filed: April 6, 2020
    Date of Patent: February 6, 2024
    Inventor: Newton Howard
  • Patent number: 11889269
    Abstract: A cochlear implant system includes a cochlear implant configured to be implanted within a patient and a sound processor communicatively coupled to the cochlear implant. The sound processor detects a unique identifier of the cochlear implant and establishes, by way of a network, an active network link with a remote computing system located remotely from the cochlear implant system. The sound processor transmits the unique identifier of the cochlear implant to the remote computing system over the active network link and, in response, receives data representative of a sound processing program associated with the cochlear implant from the remote computing system over the active network link. The sound processor stores the received data representative of the sound processing program on a local storage facility associated with the sound processor. Corresponding systems and methods are also disclosed.
    Type: Grant
    Filed: December 15, 2020
    Date of Patent: January 30, 2024
    Assignee: Advanced Bionics AG
    Inventors: R. Tissa Karunasiri, Szilard V. Gyalay, Anthony J. Spahr