Patents Examined by Octavia Davis
  • Patent number: 11938623
    Abstract: A ground simulation device and method for an on-orbit manipulation of a space manipulator is provided. The ground simulation device includes: a dual-arm robot, configured to simulate the space manipulator operating a target object; a suspension device, including a fixed post and passive rods, where the passive rods are movably connected with a top end of the fixed post, and the target object is suspended to the passive rods; and a simulation platform, configured to fix the dual-arm robot and the suspension device thereon. The ground simulation device provides the passive rods on the suspension device and suspends the target object to the passive rods, thus overcoming the gravity of the target object. In addition, the passive rods can drive the target object to move under an influence of an external force, achieving a similar suspension effect to that in space, and providing a desired, safe, and reliable implementation effect.
    Type: Grant
    Filed: March 3, 2023
    Date of Patent: March 26, 2024
    Assignee: Shenzhen Technology University
    Inventors: Gan Ma, Ziqi Xu, Zixin Lin, Zihao Jiao, Zhiming Chen, Wenwei Zhang
  • Patent number: 11933638
    Abstract: A method for detecting a phase on a gear includes obtaining a first determination result indicating whether the gear has been detected at a first detection position. A second determination result indicating whether the gear has been detected at a second detection position is obtained. A third angle between the first and second angles is obtained. A third determination result indicating whether the gear has been detected at a third detection position is obtained. The first angle is replaced with the third angle when the third and first determination results are same, or the second angle is replaced with the third angle when the third and first determination results are different. The phase on the gear is detected based on an angle that is between the first angle and the second angle.
    Type: Grant
    Filed: August 6, 2020
    Date of Patent: March 19, 2024
    Assignee: YAMAZAKI MAZAK CORPORATION
    Inventors: Kazuya Horibe, Kazumasa Maruta, Hiromasa Yamamoto, Yuki Yamamoto
  • Patent number: 11913849
    Abstract: A multi-degree of freedom (DOF) force and torque sensor is provided. The multi-DOF force and torque sensor includes a first rigid plate, a second rigid plate, multiple elastic elements connected between the first and second rigid plates, and multiple signal pairs connected between the first and second rigid plates. The signal pairs are used for detecting relative displacements of the first and second rigid plates in multiple directions.
    Type: Grant
    Filed: July 28, 2020
    Date of Patent: February 27, 2024
    Assignees: Flexiv Ltd., Shanghai Flexiv Robotics Technology Co, Ltd.
    Inventors: Hao Jiang, Shuhan Li, Shiquan Wang, Ran An, Xuesen Li
  • Patent number: 11912353
    Abstract: A kingpin assembly includes a housing having a recess located therein, a kingpin having at least a portion located within the recess of the housing, wherein the kingpin is secured within the recess of the housing, and wherein the kingpin includes an axis extending along a length of the kingpin, and a sensor arrangement configured to sense a force exerted on the kingpin in a first direction that is substantially perpendicular to the longitudinal axis, and a second direction that is substantially perpendicular to the first direction.
    Type: Grant
    Filed: February 27, 2023
    Date of Patent: February 27, 2024
    Assignee: SAF-Holland, Inc.
    Inventors: Randy L. Schutt, Ahmad Nizam Mohamad Jembari, Gerald Hungerink
  • Patent number: 11911904
    Abstract: An apparatus for handling microelectronic devices comprises a pick arm having a pick surface configured for receiving a microelectronic device thereon, drives for moving the pick arm and reorienting the pick surface in the X, Y and Z planes and about a horizontal rotational axis and a vertical rotational axis, and a sensor device carried by the pick arm and configured to detect at least one of at least one magnitude of force and at least one location of force applied between the pick surface and a structure contacted by the pick surface or a structure and a microelectronic device carried on the pick surface.
    Type: Grant
    Filed: July 15, 2020
    Date of Patent: February 27, 2024
    Assignee: Micron Technology, Inc.
    Inventors: Kuan Wei Tseng, Brandon P. Wirz
  • Patent number: 11906381
    Abstract: The invention relates to the field of detection of implantable medical devices, particularly to magnetically induced torque measurement devices and method of implants in magnetic resonance imaging systems. The measurement device includes transmission shafts, gear sets, a knob, an indicator, a detachable torsion spring set, a loading tray, a protractor, and an MRI-compatible camera. The measurement device changes its measurement range by replacing the detachable torsion spring set, adjusts a height of the loading tray by a lifting platform, amplifies a rotation angle of the knob by the gear sets, and records deflection angles of the loading tray by the MRI-compatible camera. The measurement device provides the detachable torsion spring set, which is suitable for measuring most samples; and provides a height-adjustable loading tray, which can be applied to MR systems with different center heights.
    Type: Grant
    Filed: February 14, 2023
    Date of Patent: February 20, 2024
    Assignees: Fudan University, SGS-CSTC Standards Technical Services (Shanghai) Co., Ltd.
    Inventors: Yong Yin, Xiaomei Wu, Dirong Ma
  • Patent number: 11906478
    Abstract: Described is a test head for a residual seal force (RSF) testing system. The test head includes a housing, an anvil, and a ball roller assembly. The housing defines a first cavity and the anvil is positioned at least partially within the first cavity. The ball roller assembly is configured to provide a point of contact between the housing and the anvil during a RSF test. The test head may further comprise a retaining ring configured to maintain the anvil at least partially within the first cavity.
    Type: Grant
    Filed: January 19, 2022
    Date of Patent: February 20, 2024
    Assignee: Illinois Tool Works Inc.
    Inventors: Adrian Riddick, Daniel Chouinard, Brian Salem, Christopher Hines
  • Patent number: 11906373
    Abstract: A pressure sensor that includes a piezoelectric film having a first main surface and a second main surface, a first electrode on the first main surface of the piezoelectric film, and a second electrode on the second main surface of the piezoelectric film. At least one of the first electrode and the second electrode is formed of a material having an elastic modulus of 60 GPa or more, and the product of a thickness of the at least one of the first electrode and the second electrode in a stacking direction of the pressure sensor multiplied by an elastic modulus of the at least one of the first electrode and the second electrode is 4 MPa·m or more.
    Type: Grant
    Filed: December 6, 2019
    Date of Patent: February 20, 2024
    Assignee: MURATA MANUFACTURING CO., LTD.
    Inventor: Hiroaki Kitada
  • Patent number: 11898918
    Abstract: MEMS force sensors for providing temperature coefficient of offset (TCO) compensation are described herein. An example MEMS force sensor can include a TCO compensation layer to minimize the TCO of the force sensor. The bottom side of the force sensor can be electrically and mechanically mounted on a package substrate while the TCO compensation layer is disposed on the top side of the sensor. It is shown the TCO can be reduced to zero with the appropriate combination of Young's modulus, thickness, and/or thermal coefficient of expansion (TCE) of the TCO compensation layer.
    Type: Grant
    Filed: January 30, 2023
    Date of Patent: February 13, 2024
    Assignee: NextInput, Inc.
    Inventors: Julius Minglin Tsai, Dan Benjamin
  • Patent number: 11898924
    Abstract: A sensor unit to be incorporated in a skin-like layer of machines such as robots employs a set of sensor electrodes supported in a first deformable sheet and a base electrode supported in a second deformable sheet, each of the sensor electrodes partially overlapping the base electrode so that application of a shear force causes the overlap of the electrodes to differentially change modifying the capacitance of the electrodes and permitting the detection of the shear force.
    Type: Grant
    Filed: May 7, 2021
    Date of Patent: February 13, 2024
    Assignee: The University of British Columbia
    Inventors: Mirza Saquib Sarwar, John D. W. Madden, Garth Eden Claire Preston
  • Patent number: 11895922
    Abstract: An etching method for forming a vertical structure is provided. The etching method may include: positioning a mask on a substrate, wherein the mask includes an opening pattern and a compensation pattern, and the compensation pattern is disposed at a corner of two adjacent sides of the opening pattern and includes a concave compensation pattern that is indented from one of the two adjacent sides; and forming the vertical structure on the substrate through the opening pattern of the mask by a dry etching process.
    Type: Grant
    Filed: April 7, 2021
    Date of Patent: February 6, 2024
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Choongho Rhee, Sungchan Kang, Yongseop Yoon
  • Patent number: 11885695
    Abstract: A sensor includes a sensor electrode layer including a capacitive sensing unit, a first reference electrode layer provided to face a first surface of the sensor electrode layer, and a first elastic layer that is provided between the first reference electrode layer and the sensor electrode layer, and is configured to be elastically deformed by shear force added in an in-plane direction. At least one of the first reference electrode layer or the first elastic layer includes a first probe portion that is displaced in an in-plane direction in accordance with elastic deformation of the first elastic layer, and changes an electrostatic capacitance of the sensing unit.
    Type: Grant
    Filed: October 3, 2019
    Date of Patent: January 30, 2024
    Assignee: Sony Corporation
    Inventors: Tomoko Katsuhara, Yoshiaki Sakakura, Manami Miyawaki
  • Patent number: 11885696
    Abstract: The invention relates to a vibrating wire sensor (20, 30, 40 and 50) having a vibrating wire (21, 31, 41 and 51), which is tensioned accordingly differently under measurement conditions of a current factor to be detected, and having an exciter arrangement for exciting the vibrating wire (21, 31, 41 and 51) in the range of the respective natural frequency thereof, wherein the exciter arrangement has at least one exciter layer (22, 32, 42 and 52) provided on a longitudinal portion of the vibrating wire (21, 31, 41 and 51), having a piezoelectric activation layer (33, 46 and 54), which has a different length depending on the activation state, and thus creates a correspondingly different vibration position of the vibrating wire (21, 31, 41 and 51). A vibrating wire sensor can thus be designed to be more robust, wherein the power consumption is additionally considerably less. The invention further relates to a vibrating wire having an exciter layer (22, 32, 42 and 52), which has a piezoelectric activation layer.
    Type: Grant
    Filed: February 12, 2018
    Date of Patent: January 30, 2024
    Assignee: Digi Sens Holding AG
    Inventor: Martin Lustenberger
  • Patent number: 11867575
    Abstract: A pressure/force sensor comprises a diaphragm structure including a sensing element and a lead structure extending from the diaphragm structure and including first and second traces electrically coupled to the sensing element. The diaphragm structure and the lead structure include a circuit assembly comprising a common insulating layer and a common conductor layer on the insulating layer. The conductor layer includes at least a portion of the sensing element and at least the first trace.
    Type: Grant
    Filed: January 28, 2022
    Date of Patent: January 9, 2024
    Assignee: Hutchinson Technology Incorporated
    Inventors: Michael W. Davis, Peter F. Ladwig, Matthew S. Lang, Dean E. Myers, Clark T. Olsen, Douglas P. Riemer
  • Patent number: 11860053
    Abstract: A torque sensor device for detecting a torque applied to a shaft, includes a magnetic arrangement, a stator arrangement and a magnetic sensor arrangement. The magnetic arrangement is configured for generating at least one magnetic field. A magnetic flux can be generated in the stator arrangement. The magnetic arrangement and the stator arrangement are movable relative to each other in the circumferential direction. The magnetic arrangement and the stator arrangement are arranged relative to each other so that, by a relative movement between the magnetic arrangement and the stator arrangement in the circumferential direction about a center axis of the torque sensor device, a first magnetic flux with a first magnetic flux direction and a second magnetic flux with a second flux direction opposite to the first flux direction can be generated in the stator arrangement.
    Type: Grant
    Filed: July 22, 2019
    Date of Patent: January 2, 2024
    Assignee: VALEO SCHALTER UND SENSOREN GMBH
    Inventor: Ekkehart Fröhlich
  • Patent number: 11858120
    Abstract: A force measuring sensor is provided. The force measuring sensor includes: a wire; a signal generator having one side fixed to one end of the wire; and a signal processor configured to convert and process an analog signal received from the signal generator into a digital signal, in which the wire is configured to penetrate an internal space formed in the signal generator, and the analog signal is generated by a change in thickness of a component of the signal generator caused by a change in tension of the wire.
    Type: Grant
    Filed: August 23, 2021
    Date of Patent: January 2, 2024
    Assignees: Hyundai Motor Company, Kia Corporation
    Inventors: Hyo Seung Han, Muhammad Zahak Jamal, Ju Young Yoon, Sang In Park
  • Patent number: 11846557
    Abstract: A six-axis Force Torque Transducer (FTT) including a hub and at least one flexural beam disposed on the hub and extending outwardly from the hub. Each of the at least one flexural beams including a U-beam having a substantially U-shaped cross section and at least one beam plate attached to the U-beam at a portion of the U-beam that is remote from the hub. A first strain gauge carrier, including at least one strain gauge, is mounted on an exterior surface of the at least one U-beam. A second strain gauge carrier, including at least one strain gauge, is mounted on an exterior surface of the at least one beam plate. A connection element electrically connects the strain gauges of the first strain gauge carrier and the strain gauges of the second strain gauge carrier in a bridge configuration.
    Type: Grant
    Filed: May 20, 2021
    Date of Patent: December 19, 2023
    Assignee: Bota Systems AG
    Inventor: Klajd Lika
  • Patent number: 11841286
    Abstract: A torque detection device includes a first portion, a second portion disposed inside the first portion, and a connecting portion configured to link the first portion and the second portion. The first portion includes a first convex portion that projects toward the second portion. The second portion includes a second convex portion that projects toward the first portion. An inner surface of the first portion and a surface of the first convex portion link to the connecting portion. An outer surface of the second portion and a surface of the second convex portion link to the connecting portion. When torque is applied, the connecting portion deforms, and the first portion and the second portion are displaced relative to each other.
    Type: Grant
    Filed: December 29, 2020
    Date of Patent: December 12, 2023
    Assignee: Canon Kabushiki Kaisha
    Inventor: Isamu Okuma
  • Patent number: 11835401
    Abstract: The invention relates to a pressure sensor, forces after one to three directions, normal to the sensor plane and tangential to the sensor plane, as well as torques, the sensor being based on the variation of reactive or mixed impedances when applying normal forces or pressure and/or tangential forces or torques on the sensor structure. The sensor has a structure that includes a closed and watertight space, so that the behavior of the sensor is little or not affected by varying environmental conditions.
    Type: Grant
    Filed: August 26, 2022
    Date of Patent: December 5, 2023
    Inventors: Mike Horia Mihail Teodorescu, Horia-Nicolai Teodorescu, Marius Gheorghe Hagan
  • Patent number: 11835410
    Abstract: A method for determining sensor parameters of an actively-driven sensor system may include performing an initialization operation to establish a baseline estimate of the sensor parameters, obtaining as few as three samples of a measured physical quantity versus frequency for the actively-driven sensor system, performing a refinement operation to provide a refined version of the sensor parameters based on the as few as three samples, iteratively repeating the refinement operation until the difference between successive refined versions of the sensor parameters is below a defined threshold, and outputting the refined sensor parameters as updated sensor parameters for the actively-driven sensor system.
    Type: Grant
    Filed: October 26, 2020
    Date of Patent: December 5, 2023
    Assignee: Cirrus Logic Inc.
    Inventors: Michael A. Kost, Tejasvi Das, Marc J. Kobayashi, Siddharth Maru, Rahul Gawde