Patents Examined by Patricia L. Hailey
  • Patent number: 11406967
    Abstract: Disclosed are a heterogeneous catalyst, a production method thereof, and a method for producing a lignin-derived high-substituted aromatic monomer from a woody biomass material using the heterogeneous catalyst. The heterogeneous catalyst includes a carrier; and a Ni—Al nano-particle supported on the carrier.
    Type: Grant
    Filed: March 27, 2020
    Date of Patent: August 9, 2022
    Assignee: Research & Business Foundation Sungkyunkwan University
    Inventors: Jaehoon Kim, Jae Yong Park
  • Patent number: 11401566
    Abstract: A stainless steel with high strength and high toughness and processing method thereof are disclosed in the present invention. The stainless steel comprising: C of 0.01%˜0.1% weight percentage, N of 0.05%˜0.2%, P of no higher than 0.03%, S of no higher than 0.003%, Si of 0.5%˜1%, Mn of 1.0%˜2.0%, Cr of 15%˜17%, Ni of 5% to 7%, and Fe. The stainless steel contains austenite and strain-induced martensite structure, wherein the martensite is of irregular approximately spindle body shape, and the average size of its long axis ranges from 50 to 1000 nm and that of its short axis ranges from 20 to 500 nm, the volume percent of martensite in the stainless steel is 0.1% to 20%.
    Type: Grant
    Filed: June 5, 2017
    Date of Patent: August 2, 2022
    Assignee: Zhejiang University
    Inventors: Jiabin Liu, Hongtao Wang, Youtong Fang
  • Patent number: 11404701
    Abstract: A process for preparing a catalyst material, said catalyst material comprising a support material, a first metal and one or more second metals, wherein the first metal and the second metal(s) are alloyed and wherein the first metal is a platinum group metal and the second metal(s) is selected from the group of transition metals and tin provided the second metal(s) is different to the first metal is disclosed. The process comprises depositing a silicon oxide before or after deposition of the second metal(s), alloying the first and second metals and subsequently removing silicon oxide. A catalyst material prepared by this process is also disclosed.
    Type: Grant
    Filed: October 6, 2020
    Date of Patent: August 2, 2022
    Assignee: Johnson Matthey Fuel Cells Limited
    Inventors: Alejandro Martinez Bonastre, Geoffrey Hugh Spikes, Rachel Louise O'Malley
  • Patent number: 11400442
    Abstract: The disclosure relates to a process for producing a VPO catalyst containing molybdenum and a vanadyl pyrophosphate phase, which comprises the steps: a) provision of a reaction mixture comprising a V(V) compound, a P(V) compound, an Mo compound, a reducing agent and a solvent, b) reduction of the V(V) compound by means of the reducing agent at least in parts to give vanadyl hydrogenphosphate in order to obtain an intermediate suspension, c) filtration of the intermediate suspension from step b) in order to obtain an intermediate, d) drying of the intermediate at a temperature of not more than 350° C. in order to obtain a dried intermediate and e) activation of the dried intermediate at a temperature above 200° C., characterized in that not more than 0.2% by weight of water, based on the weight of the reaction mixture, is present in step a) and no water is withdrawn during the reduction in step b).
    Type: Grant
    Filed: January 16, 2020
    Date of Patent: August 2, 2022
    Assignee: CLARIANT INTERNATIONAL LTD
    Inventors: Sebastian Boecklein, Gerhard Mestl, Gabriele Bindseil, Rene Hausmann, Sarah Limbrunner, Anna Waldschuetz
  • Patent number: 11389789
    Abstract: The invention discloses a visible light responsive titanium dioxide nanowire/metal organic skeleton/carbon nanofiber membrane and preparation method and application thereof. A CNF (Carbon Nano Fiber)/TiO2 nano-wire/MIL-100 (represented as CTWM) membrane material is prepared and an MIL-100 material is used for adsorbing waste gas to enhance the photocatalytic effect of titanium dioxide on the membrane material; a CNF/TiO2/MIL-100 membrane catalyst sufficiently utilizes the adsorption capability of MIL-100 on the waste gas, the photocatalytic degradation performance of the TiO2 and high electrical conductivity of CNF to effectively prolong the service life of photoelectrons and promote the photocatalytic activity of the photoelectrons.
    Type: Grant
    Filed: May 30, 2019
    Date of Patent: July 19, 2022
    Assignee: SOOCHOW UNIVERSITY
    Inventors: Jianmei Lu, Dongyun Chen, Jun Jiang
  • Patent number: 11383223
    Abstract: The present invention relates to a method of making a support material composition comprising an Mg/AI oxide, a cerium oxide and at least another rare earth element oxide, to a support material composition and to the use of the support material composition as a nitrogen oxide storage component within a catalyst for treating exhaust gases to reduce NOx content.
    Type: Grant
    Filed: May 3, 2018
    Date of Patent: July 12, 2022
    Assignee: Sasol Germany GmbH
    Inventors: Marcos Schoneborn, Dirk Niemeyer, Thomas Harmening, Sandra Fibikar
  • Patent number: 11384040
    Abstract: Disclosed are methods for preparing cannabigerol (CBG) or a CBG analog, embodiments of the method comprising providing a compound (I); combining the compound (I) with geraniol and a solvent to form a reaction mixture; and combining the reaction mixture with an acid catalyst to form a product mixture comprising the CBG or the CBG homolog. The method may further comprise separating the CBG or the CBG analog from the product mixture and may further comprise purifying the CBG or CBG analog. Methods for preparing cannabigerolic acid (CBGA) or a cannabigerolic acid analog are also disclosed. The present disclosure also provides highly purity CBG, CBGA, and analogs thereof.
    Type: Grant
    Filed: October 6, 2021
    Date of Patent: July 12, 2022
    Inventors: Daniel Brumar, Mahmood Azizpour Fard, Ben Geiling, Mohammadmehdi Haghdoost Manjili
  • Patent number: 11384059
    Abstract: A carrier for an ethylene epoxidation catalyst, the carrier comprising a porous alumina body formed of sintered particles of alumina in a substantial absence of inorganic binder species other than alumina, wherein the substantial absence of inorganic binder species corresponds to an amount of less than 0.6 wt % inorganic binder species other than alumina and comprises at least a substantial absence of silicon-containing species.
    Type: Grant
    Filed: December 19, 2018
    Date of Patent: July 12, 2022
    Assignees: Scientific Design Company, Inc., Noritake Co., Limited
    Inventors: Serguei Pak, Yasuyuki Kato
  • Patent number: 11376573
    Abstract: Methods of preparing an acidic catalyst are disclosed that include heating a metal halide to produce a vapor phase metal halide, contacting an initial support material with the vapor phase metal halide in a reaction vessel causing a first chemical reaction and producing an intermediate acidic catalyst, contacting the intermediate acidic catalyst with HBr causing a second chemical reaction and producing an acidic catalyst product which is both more acidic than the intermediate acidic catalyst and more acidic than the initial support material.
    Type: Grant
    Filed: February 14, 2020
    Date of Patent: July 5, 2022
    Assignee: Board of Supervisors of Louisiana State University and Agricultural and Mechanical College
    Inventors: James J. Spivey, Kunlun Ding, Swarom Kanitkar
  • Patent number: 11370976
    Abstract: Process for hydrogenating at least one aromatic or polyaromatic compound contained in a hydrocarbon feedstock having a final boiling point of less than or equal to 650° C., said process being performed in the gas phase or in the liquid phase at a temperature of between 30 and 350° C., at a pressure of between 0.1 and 20 MPa, at a hydrogen/(aromatic compounds to be hydrogenated) mole ratio of between 0.1 and 10 and at an hourly space velocity (HSV) of between 0.05 and 50 h?1, in the presence of a catalyst comprising an active phase comprising nickel, said active phase not comprising any group VIB metal, and a support comprising an amorphous mesoporous alumina having a connectivity (Z) of greater than 2.7, the connectivity being determined from the nitrogen adsorption/desorption isotherms.
    Type: Grant
    Filed: June 13, 2018
    Date of Patent: June 28, 2022
    Assignee: IFP Energies Nouvelles
    Inventors: Malika Boualleg, Anne-Claire Dubreuil
  • Patent number: 11358132
    Abstract: A method comprising a) contacting a solvent, a carboxylic acid, and a peroxide-containing compound to form an acidic mixture wherein a weight ratio of solvent to carboxylic acid in the acidic mixture is from about 1:1 to about 100:1; b) contacting a titanium-containing compound and the acidic mixture to form a solubilized titanium mixture wherein an equivalent molar ratio of titanium-containing compound to carboxylic acid in the solubilized titanium mixture is from about 1:1 to about 1:4 and an equivalent molar ratio of titanium-containing compound to peroxide-containing compound in the solubilized titanium mixture is from about 1:1 to about 1:20; and c) contacting a chromium-silica support comprising from about 0.1 wt. % to about 20 wt. % water and the solubilized titanium mixture to form an addition product and drying the addition product by heating to a temperature in a range of from about 50° C. to about 150° C. and maintaining the temperature in the range of from about 50° C. to about 150° C.
    Type: Grant
    Filed: August 17, 2021
    Date of Patent: June 14, 2022
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Max P. McDaniel, Kathy S. Clear, Jeremy M. Praetorius, Eric D. Schwerdtfeger, Mitchell D. Refvik, Mark L. Hlavinka
  • Patent number: 11358125
    Abstract: The present invention discloses a bismuth oxide (Bi2O3)/bismuth subcarbonate ((BiO)2CO3)/bismuth molybdate (Bi2MoO6) composite photocatalyst, including a Bi2MoO6 photocatalyst, where Bi2O3 and (BiO)2CO3 nanosheets are introduced to a surface of the Bi2MoO6 through addition of Na2CO3 and roasting. The present invention also discloses a preparation method of the Bi2O3/(BiO)2CO3/Bi2MoO6 composite photocatalyst which is specifically implemented by the following steps: step 1: preparing a Bi2MoO6 photocatalyst; step 2: introducing Bi2O3 and (BiO)2CO3 nanosheets to a surface of the Bi2MoO6 photocatalyst obtained in step 1 through addition of Na2CO3 and roasting to obtain the Bi2O3/(BiO)2CO3/Bi2MoO6 composite photocatalyst. The photocatalyst of the present invention has no agglomeration, a wide responsive range of visible light, a significantly improved catalytic activity compared with a Bi2MoO6 alone, and excellent reusability.
    Type: Grant
    Filed: June 24, 2020
    Date of Patent: June 14, 2022
    Assignee: YAN'AN UNIVERSITY
    Inventors: Feng Fu, Huidong Shen, Danjun Wang, Yanzhong Zhen, Wenwen Xue, Long Yan
  • Patent number: 11358131
    Abstract: A method comprising a) contacting a solvent, a carboxylic acid, and a peroxide-containing compound to form an acidic mixture wherein a weight ratio of solvent to carboxylic acid in the acidic mixture is from about 1:1 to about 100:1; b) contacting a titanium-containing compound and the acidic mixture to form a solubilized titanium mixture wherein an equivalent molar ratio of titanium-containing compound to carboxylic acid in the solubilized titanium mixture is from about 1:1 to about 1:4 and an equivalent molar ratio of titanium-containing compound to peroxide-containing compound in the solubilized titanium mixture is from about 1:1 to about 1:20; and c) contacting a chromium-silica support comprising from about 0.1 wt. % to about 20 wt. % water and the solubilized titanium mixture to form an addition product and drying the addition product by heating to a temperature in a range of from about 50° C. to about 150° C. and maintaining the temperature in the range of from about 50° C. to about 150° C.
    Type: Grant
    Filed: August 17, 2021
    Date of Patent: June 14, 2022
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Max P. McDaniel, Kathy S. Clear, Jeremy M. Praetorius, Eric D. Schwerdtfeger, Mitchell D. Refvik, Mark L. Hlavinka
  • Patent number: 11351523
    Abstract: A process for regenerating a deactivated vanadium-titanium-phosphorous catalyst which has been used in the production of unsaturated carboxylic acid is disclosed. The process comprises contacting the deactivated vanadium-titanium-phosphorous catalyst with a regeneration stream comprising steam as a regeneration agent at a temperature which is the same or similar to that used in the production of the unsaturated carboxylic acid.
    Type: Grant
    Filed: September 21, 2017
    Date of Patent: June 7, 2022
    Assignee: Johnson Matthey Davy Technologies Limited
    Inventors: Michael Bainbridge, Javad Tabatabaei
  • Patent number: 11351532
    Abstract: The present invention provides a preparation method of a photocatalytic composite material, and relates to the field of catalyst technologies. The preparation method provided in the present invention includes the following steps: (1) subjecting plant leaves to soaking pretreatment to obtain template biomass; (2) mixing a molybdenum source-sulfur source aqueous solution with the template biomass obtained in step (1) and conducting impregnation to obtain a composite material precursor; and (3) calcining the composite material precursor obtained in step (2) to obtain the photocatalytic composite material. The photocatalytic composite material in the present invention includes acicular molybdenum sulfide and biomass carbon, the acicular molybdenum sulfide is loaded to a surface of the flake carbon, the mass content of the biomass carbon is 70% to 90%, and the mass content of the molybdenum sulfide is 10% to 30%.
    Type: Grant
    Filed: July 30, 2018
    Date of Patent: June 7, 2022
    Assignee: Suzhou University Of Science And Technology
    Inventors: Zhigang Chen, Feng Chen, Junchao Qian, Chengbao Liu, Chencheng Wang
  • Patent number: 11344867
    Abstract: A carbon catalyst has: a carbon structure that exhibits a nitrogen desorption temperature range from 800° C.-1,000° C. of 0.75×10?5 mol/g or more or a nitrogen desorption amount in the range from 600° C. to 1,000° C. of 1.20×10?5 mol/g or more in a temperature programmed desorption method including measuring nitrogen desorption amount temperature range from 600° C.-1,000° C.; a carbon structure exhibits a zeta potential isoelectric point of pH 9.2 or more; or a carbon structure exhibits a ratio of an intensity of a first nitrogen peak within a range of a binding energy of 398.0±1.0 eV, to an intensity of a second nitrogen peak having a peak top within a range of a binding energy of 400.5±1.0 eV, of 0.620 or more, the first and second nitrogen peaks obtained by separating a peak derived from a 1s orbital of a nitrogen atom in a photoelectron spectrum obtained by X-ray photoelectron spectroscopy.
    Type: Grant
    Filed: July 3, 2018
    Date of Patent: May 31, 2022
    Assignee: NISSHINBO HOLDINGS INC.
    Inventors: Yuji Kubota, Takeaki Kishimoto, Kumi Narizuka, Tetsutaro Sato
  • Patent number: 11338271
    Abstract: A porous carbon material including a porous carbon material having a specific resistance value of 30 ?cm or less at a packing density of 0.3 g/cc, wherein a mesopore volume (cm3/g) of the porous carbon material as measured by the BJH method is 0.5 cm3/g or greater.
    Type: Grant
    Filed: January 24, 2019
    Date of Patent: May 24, 2022
    Assignee: Dexerials Corporation
    Inventors: Katsuya Tanba, Yoshiharu Okuda, Teiko Kuroda
  • Patent number: 11338272
    Abstract: The present disclosure relates to a catalyst for directly decomposing urea, a method for preparing the same and a system for decomposing urea including the same, whereby the efficiency of decomposing urea to ammonia may be improved while preventing the formation of a byproduct such as biuret at temperatures of 200° C. or below by controlling the oxygen composition of the catalyst including titania and ceria.
    Type: Grant
    Filed: September 2, 2020
    Date of Patent: May 24, 2022
    Assignee: DAEYOUNG C&E
    Inventors: Sei Youn Noh, Nam Ha Kim, Byung Han Seo, Hyo Sang Lee, Myoung Jin Kha, Jong Min Won, Gyeong Ryun Choi
  • Patent number: 11338276
    Abstract: A catalyst for preparing chloroethylene by cracking 1,2-dichloroethane and a preparation and regeneration method thereof are disclosed in the present application. A catalyst for preparing chloroethylene by cracking 1,2-dichloroethane includes a carrier and a nitrogen-containing carbon as an active component of the catalyst with the nitrogen-containing carbon being loaded on the carrier. The method for preparing the catalyst includes: supporting an organic matter on an inorganic porous carrier and then performing a carbonization-nitridation process by pyrolysis in an atmosphere containing the nitrogen-containing compound. The method for regenerating the catalyst includes: calcinating the catalyst with deactivated carbon deposit in an oxidizing atmosphere to remove all the carbonaceous portions on the surface, and repeating the above preparation process of the catalyst.
    Type: Grant
    Filed: April 30, 2019
    Date of Patent: May 24, 2022
    Assignees: DALIAN INSTITUTE OF CHEMICAL PHYSICS, CHINESE ACADEMY OF SCIENCES, FORMOSA PLASTICS CORPORATION
    Inventors: Jinming Xu, Sisi Fan, Yanqiang Huang, Fao Zhang, Chin Lien Huang, Wan Tun Hung, Tu Cheng Chen, Chien Hui Wu, Ya Wen Cheng, Ming Hsien Wen, Chao Chin Chang, Tsao Cheng Huang
  • Patent number: 11338275
    Abstract: Methods and catalysts for producing benzyl alcohol and homologues thereof from short-chain alcohols by catalytic conversion are disclosed. The methods and catalysts develop a new route for benzyl alcohols and ethyl benzyl alcohols production through cross coupling-aromatization reaction using short-chain alcohols as reactants and provide corresponding catalysts required for the above catalytic reaction. It is emphasized on a single bed catalyst to produce benzyl alcohol and its homologues in one step, and is expected to become an important alternative route for the production of benzyl alcohol and its homologues. A route and corresponding catalysts for directly producing benzyl alcohol and ethyl benzyl alcohol through coupling-aromatization reaction starting from low carbon alcohols are provided. The selectivity of the benzyl alcohol is up to 35%, and the total selectivity of the ethyl benzyl alcohol is up to 11%.
    Type: Grant
    Filed: September 28, 2018
    Date of Patent: May 24, 2022
    Assignee: DALIAN UNIVERSITY OF TECHNOLOGY
    Inventors: Anhui Lu, Wencui Li, Baichuan Zhou, Qingnan Wang