Patents Examined by Paul Budd
  • Patent number: 8786057
    Abstract: By forming MOSFETs on a substrate having pre-existing ridges of semiconductor material (i.e., a “corrugated substrate”), the resolution limitations associated with conventional semiconductor manufacturing processes can be overcome, and high-performance, low-power transistors can be reliably and repeatably produced. Forming a corrugated substrate prior to actual device formation allows the ridges on the corrugated substrate to be created using high precision techniques that are not ordinarily suitable for device production. MOSFETs that subsequently incorporate the high-precision ridges into their channel regions will typically exhibit much more precise and less variable performance than similar MOSFETs formed using optical lithography-based techniques that cannot provide the same degree of patterning accuracy. Additional performance enhancement techniques such as pulse-shaped doping and “wrapped” gates can be used in conjunction with the segmented channel regions to further enhance device performance.
    Type: Grant
    Filed: July 23, 2008
    Date of Patent: July 22, 2014
    Assignee: Synopsys, Inc.
    Inventors: Tsu-Jae King, Victor Moroz
  • Patent number: 8766230
    Abstract: Non-volatile multi-bit memory with programmable capacitance is disclosed. Illustrative data memory units include a substrate including a source region and a drain region; and a gate stack structure over the substrate and between the source region and drain region. The gate stack structure includes a first solid electrolyte cell and a second solid electrolyte cell. The solid electrolyte cells having a capacitance that is controllable between at least two states. A gate contact layer is electrically coupled to a voltage source. The first solid electrolyte cell and the second solid electrolyte cell separate the gate contact layer from the substrate.
    Type: Grant
    Filed: August 17, 2010
    Date of Patent: July 1, 2014
    Assignee: Seagate Technology LLC
    Inventors: Xuguang Wang, Shuiyuan Huang, Dimitar V. Dimitrov, Michael Xuefei Tang, Song S. Xue
  • Patent number: 8765603
    Abstract: Buffer layer and method of forming the buffer layer, the method including forming a high-k dielectric layer, forming a titanium nitride layer over the high-k dielectric layer, forming a silicon layer on the titanium nitride layer, annealing the silicon layer into the titanium nitride layer to form an annealed silicon layer and forming an n-metal over the high-k dielectric layer.
    Type: Grant
    Filed: August 1, 2011
    Date of Patent: July 1, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Cheng-Hao Hou, Wei-Yang Lee, Xiong-Fei Yu, Kuang-Yuan Hsu
  • Patent number: 8759912
    Abstract: A high-voltage transistor device comprises a spiral resistive field plate over a first well region between a drain region and a source region of the high-voltage transistor device, wherein the spiral resistive field plate is separated from the first well region by a first isolation layer, and is coupled between the drain region and the source region. The high-voltage transistor device further comprises a plurality of first field plates over the spiral resistive field plate with each first field plate covering one or more segments of the spiral resistive field plate, wherein the plurality of first field plates are isolated from the spiral resistive field plate by a first dielectric layer, and wherein the plurality of first field plates are isolated from each other, and a starting first field plate is connected to the source region.
    Type: Grant
    Filed: August 1, 2011
    Date of Patent: June 24, 2014
    Assignee: Monolithic Power Systems, Inc.
    Inventors: Donald R. Disney, Ognjen Milic, Kun Yi
  • Patent number: 8748965
    Abstract: According to one embodiment, a nonvolatile semiconductor memory device includes a memory cell transistor obtained by sequentially stacking the gate insulation film, the floating gate electrode, the interelectrode insulation film, and the control gate electrode over the channel semiconductor layer. The control gate electrode has a structure obtained by sequentially stacking the semiconductor film, the silicide phase-change suppressing layer, and the silicide film. In addition, the silicide phase-change suppressing layer includes a polycrystalline silicon film in which at least one of C, F, and N is doped in a concentration range of 1×1020 to 5×1021 [atom/cm3].
    Type: Grant
    Filed: August 3, 2011
    Date of Patent: June 10, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Satoshi Nagashima, Junya Fujita, Hideyuki Yamawaki, Masahiro Kiyotoshi, Hisataka Meguro
  • Patent number: 8742388
    Abstract: Variable resistance memory devices may include a semiconductor layer including first, second, third doped regions, a variable resistance pattern on the semiconductor layer, a lower electrode between the semiconductor layer and the variable resistance pattern, and a first metal silicide pattern in contact with the semiconductor layer. The third doped region may be spaced apart from the first metal silicide pattern, the first doped region may be spaced apart from the third doped region, and a second doped region may be interposed between the first and third doped regions and be in contact with the first metal silicide pattern. The first doped region may have the same conductivity type as the third doped region and a different conductivity type from the second doped region.
    Type: Grant
    Filed: September 23, 2011
    Date of Patent: June 3, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Jaekyu Lee
  • Patent number: 8735254
    Abstract: A semiconductor device has: a low concentration drain region creeping under a gate electrode of a MIS type transistor; a high concentration drain region having an impurity concentration higher than the low concentration drain region and formed in the low concentration drain region spaced apart from the gate electrode; and an opposite conductivity type region of a conductivity type opposite to the drain region formed in the low concentration drain region on a surface area between the high concentration drain region and the gate electrode, the opposite conductivity type region and low concentration drain region forming a pn junction.
    Type: Grant
    Filed: February 27, 2013
    Date of Patent: May 27, 2014
    Assignee: Fujitsu Semiconductor Limited
    Inventors: Masashi Shima, Kazukiyo Joshin, Toshihide Suzuki
  • Patent number: 8703522
    Abstract: A stratified photodiode for high resolution CMOS image sensors implemented with STI technology is provided. The photodiode includes a semi-conductive layer of a first conductivity type, multiple doping regions of a second conductivity type, multiple doping regions of the first conductivity type, and a pinning layer. The multiple doping regions of the second conductivity type are formed to different depths in the semi-conductive layer. The multiple doping regions of the first conductivity type are disposed between the multiple doping regions of the second conductivity type and form multiple junction capacitances without full depletion. In particular, the stratified doping arrangement allows the photodiode to have a small size, high charge storage capacity, low dark current, and low operation voltages.
    Type: Grant
    Filed: July 31, 2012
    Date of Patent: April 22, 2014
    Assignee: Intellectual Ventures II LLC
    Inventor: Jaroslav Hynecek
  • Patent number: 8680620
    Abstract: Bi-directional blocking voltage protection devices and methods of forming the same are disclosed. In one embodiment, a protection device includes an n-well and first and second p-wells disposed on opposite sides of the n-well. The first p-well includes a first P+ region and a first N+ region and the second p-well includes a second P+ region and second N+ region. The device further includes a third P+ region disposed along a boundary of the n-well and the first p-well and a fourth P+ region disposed along a boundary of the n-well and the second p-well. A first gate is disposed between the first N+ region and the third P+ region and a second gate is disposed between the second N+ region and the fourth P+ region. The device provides bi-directional blocking voltage protection during high energy stress events, including in applications operating at very low to medium swing voltages.
    Type: Grant
    Filed: August 4, 2011
    Date of Patent: March 25, 2014
    Assignee: Analog Devices, Inc.
    Inventors: Javier A Salcedo, Michael Lynch, Brian Moane
  • Patent number: 8680502
    Abstract: A memory device includes: first and second electrodes; a semiconductor layer of a first conduction type provided on the first electrode side; a solid electrolyte layer containing movable ions and provided on the second electrode side; and an amorphous semiconductor layer of a second conduction type which is provided between the semiconductor layer and the solid electrolyte layer so as to be in contact with the solid electrolyte layer and, at the time of application of voltage to the first and second electrodes, reversibly changes to the first conduction type.
    Type: Grant
    Filed: August 4, 2011
    Date of Patent: March 25, 2014
    Assignee: Sony Corporation
    Inventors: Minoru Ikarashi, Katsuhisa Aratani
  • Patent number: 8675394
    Abstract: An object is to provide a semiconductor device which can hold stored data even when not powered and which achieves high integration by reduction of the number of wirings. The semiconductor device is formed using a material which can sufficiently reduce the off-state current of a transistor, e.g., an oxide semiconductor material which is a wide bandgap semiconductor. When a semiconductor material which allows a sufficient reduction in the off-state current of a transistor is used, data can be held for a long period. One line serves as the word line for writing and the word line for reading and one line serves as the bit line for writing and the bit line for reading, whereby the number of wirings is reduced. Further, by reducing the number of source lines, the storage capacity per unit area is increased.
    Type: Grant
    Filed: July 27, 2011
    Date of Patent: March 18, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Daisuke Matsubayashi
  • Patent number: 8664722
    Abstract: In a method for manufacturing a semiconductor device, a semiconductor film formed over an insulator is doped with an impurity element to a depth less than the thickness of the semiconductor film, thereby forming an impurity doped layer; a metal silicide layer is formed on the impurity doped layer; the metal silicide layer and the semiconductor film are etched to form a recessed portion; and a layer which is not doped with the impurity element and is located at the bottom of the recessed portion of the semiconductor film is thinned to make a channel formation region. Further, a gate electrode is formed in the recessed portion over the thinned non impurity doped layer, with an insulating film interposed therebetween.
    Type: Grant
    Filed: November 4, 2011
    Date of Patent: March 4, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Takashi Shingu, Daisuke Ohgarane, Yurika Sato
  • Patent number: 8664068
    Abstract: The drain and source regions may at least be partially formed by in situ doped epitaxially grown semiconductor materials for complementary transistors in sophisticated semiconductor devices designed for low power and high performance applications. To this end, cavities may be refilled with in situ doped semiconductor material, which in some illustrative embodiments also provides a desired strain in the channel regions of the complementary transistors.
    Type: Grant
    Filed: July 28, 2011
    Date of Patent: March 4, 2014
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Jan Hoentschel, Stefan Flachowsky, Steven Langdon, Thilo Scheiper
  • Patent number: 8659064
    Abstract: The invention includes methods of utilizing compositions containing iridium and tantalum in semiconductor constructions, and includes semiconductor constructions comprising compositions containing iridium and tantalum. The compositions containing iridium and tantalum can be utilized as barrier materials, and in some aspects can be utilized as barriers to copper diffusion.
    Type: Grant
    Filed: July 19, 2011
    Date of Patent: February 25, 2014
    Assignee: Micron Technology, Inc.
    Inventor: Yongjun Jeff Hu
  • Patent number: 8659086
    Abstract: An Electro-Static Discharge (ESD) protection device is formed in an isolated region of a semiconductor substrate. The ESD protection device may be in the form of a MOS or bipolar transistor or a diode. The isolation structure may include a deep implanted floor layer and one or more implanted wells that laterally surround the isolated region. The isolation structure and ESD protection devices are fabricated using a modular process that includes virtually no thermal processing. Since the ESD device is isolated, two or more ESD devices may be electrically “stacked” on one another such that the trigger voltages of the devices are added together to achieve a higher effective trigger voltage.
    Type: Grant
    Filed: September 30, 2008
    Date of Patent: February 25, 2014
    Assignee: Advanced Analogic Technologies (Hong Kong) Limited
    Inventors: Donald Ray Disney, Jun-Wei Chen, Richard K. Williams, HyungSik Ryu, Wai Tien Chan
  • Patent number: 8658530
    Abstract: An epitaxial Ni silicide film that is substantially non-agglomerated at high temperatures, and a method for forming the epitaxial Ni silicide film, is provided. The Ni silicide film of the present disclosure is especially useful in the formation of ETSOI (extremely thin silicon-on-insulator) Schottky junction source/drain FETs. The resulting epitaxial Ni silicide film exhibits improved thermal stability and does not agglomerate at high temperatures.
    Type: Grant
    Filed: September 12, 2012
    Date of Patent: February 25, 2014
    Assignees: International Business Machines Corporation, GlobalFoundries Inc.
    Inventors: Marwan H. Khater, Christian Lavoie, Bin Yang, Zhen Zhang
  • Patent number: 8659000
    Abstract: A memory device includes: an amorphous semiconductor layer of a first conduction type; a solid electrolyte layer containing movable ions and provided in contact with a part of one of faces of the amorphous semiconductor layer; a first electrode electrically connected to the amorphous semiconductor layer via the solid electrolyte layer; a second electrode electrically connected to one of the faces of the amorphous semiconductor layer; and a third electrode provided over the other face of the amorphous semiconductor layer with an insulating layer therebetween. At the time of application of voltage to the third electrode, at least a part of the amorphous semiconductor layer reversibly changes to a second conduction type.
    Type: Grant
    Filed: August 4, 2011
    Date of Patent: February 25, 2014
    Assignee: Sony Corporation
    Inventors: Minoru Ikarashi, Katsuhisa Aratani
  • Patent number: 8658491
    Abstract: A semiconductor device and a method for manufacturing the same are disclosed. The disclosed semiconductor device includes a semiconductor substrate having a device isolation structure for delimiting an active region, the active region being recessed and grooves being defined in channel forming areas of the active region; gates formed in and over the grooves; gate spacers formed on both sidewalls of the gates over portions of the recessed active region which are positioned on both sides of the gates; an LDD region formed in the active region under the gate spacers; junction areas formed in the active region on both sides of the gates including the gate spacers; and landing plugs formed on the junction areas.
    Type: Grant
    Filed: September 27, 2010
    Date of Patent: February 25, 2014
    Assignee: Hynix Semiconductor Inc.
    Inventor: Gyu Seog Cho
  • Patent number: 8652937
    Abstract: A back-illuminated semiconductor imaging device on a semiconductor-on-insulator substrate is disclosed. The device includes an insulator layer, a semiconductor substrate having an interface with the insulator layer, an epitaxial layer grown on the semiconductor substrate; and one or more imaging components in the epitaxial layer. The semiconductor substrate and the epitaxial layer exhibit a net doping concentration profile having a maximum value at a predetermined distance from the interface which decreases monotonically on both sides of the profile. The doping profile between the interface with the insulation layer and the peak of the doping profile functions as a “dead band” to prevent dark current carriers from penetrating to the front side of the device.
    Type: Grant
    Filed: March 13, 2012
    Date of Patent: February 18, 2014
    Assignee: SRI International
    Inventors: Levine Peter Alan, Pradyumna Swain, Mahalingam Bhaskaran
  • Patent number: 8648326
    Abstract: An example embodiment is a phase change memory cell that includes a bottom contact and an electrically insulating layer disposed over the bottom contact. The electrically insulating layer defines an elongated via. Furthermore, a bottom electrode is disposed at least partially in the via. The bottom electrode includes a sleeve of a first electrically conductive material surrounding a rod of a second electrically conductive material. The first electrically conductive material and the second electrically conductive material have different specific electrical resistances. The memory cell also includes a phase change layer electrically coupled to the first electrode.
    Type: Grant
    Filed: July 27, 2011
    Date of Patent: February 11, 2014
    Assignee: International Business Machines Corporation
    Inventors: Matthew J. Breitwisch, Bipin Rajendran