Patents Examined by Peter M Bythrow
  • Patent number: 11888554
    Abstract: A radar system, apparatus, architecture, and method are provided for generating a difference co-array virtual aperture by using a radar control processing unit to coherently combine virtual array apertures from multiple small aperture radar devices to construct a sparse MIMO virtual array aperture and to construct an extended difference co-array virtual array aperture that is larger than the MIMO virtual array aperture by using an FFT hardware accelerator to perform spectral-domain auto-correlation based processing of the sparse MIMO virtual array aperture to fill in holes in the sparse MIMO virtual array aperture and to suppress spurious sidelobes caused by holes in the sparse MIMO virtual array aperture.
    Type: Grant
    Filed: July 27, 2021
    Date of Patent: January 30, 2024
    Assignee: NXP USA, Inc.
    Inventors: Ryan Haoyun Wu, Filip Alexandru Rosu, Daniel Silion, Tudor Bogatu
  • Patent number: 11885870
    Abstract: The present application discloses a new form of ?-STAP, referred to herein as post ?-STAP or P?-STAP, which overcomes the drawbacks associated with existing ?-STAP techniques. The P?-STAP techniques described herein facilitate the generation of additional training data and homogenization after pulse compression. For example, P?-STAP techniques may apply a plurality of homogenization filters to a pulse compressed datacube generated from an input radar waveform, which produces a plurality of new pulse compressed datacubes with improved characteristics. Unlike existing ?-STAP techniques described above, which require pre-pulse compressed data to operate, the P?-STAP techniques disclosed in the present application are designed to utilize pulse compressed data, and therefore may be readily applied to legacy radar systems.
    Type: Grant
    Filed: July 30, 2019
    Date of Patent: January 30, 2024
    Assignees: University of Kansas, The United States of America as Represented by the Secretary of the Air Force
    Inventors: Lumumba Harnett, Justin G. Metcalf, Shannon D. Blunt
  • Patent number: 11879992
    Abstract: A method for identifying and classifying static radar targets with the aid of a radar sensor of a motor vehicle. The method includes: identifying an object as a static radar target based on the received radar signals reflected by the object, generating an occupancy pattern in an occupancy grid based on the received radar signals reflected by the object, storing an assignment, which assigns the generated occupancy pattern to the static radar target, classifying the static radar target as belonging to one or multiple groups of static radar targets based on characteristic features of radar signatures of the received radar signals reflected by the corresponding object. A radar sensor is also described.
    Type: Grant
    Filed: April 27, 2019
    Date of Patent: January 23, 2024
    Assignee: ROBERT BOSCH GMBH
    Inventors: Stefan Lang, Thomas Gussner
  • Patent number: 11874368
    Abstract: A millimeter wavelength charting synthetic aperture radar having small dimensions and light weight, carried by an UAV (unmanned aerial vehicle), also referred to as a drone.
    Type: Grant
    Filed: December 30, 2018
    Date of Patent: January 16, 2024
    Assignee: T-JUMP TECNOLOGIAS LTDA
    Inventor: Laila Fabi Moreira
  • Patent number: 11874364
    Abstract: An electronic apparatus includes a transmission unit, a reception unit, and a controller. The transmission unit transmits a transmission wave. The reception unit receives a reflected wave of the transmission wave reflected by an object. The controller operates the transmission unit in one of a plurality of operation modes having different detection distances. When the reflected wave is received by the reception unit, the controller determines a distance between the electronic apparatus and the object, based on the transmission wave and the reflected wave. The controller operates the transmission unit in an operation mode having the detection distance that includes the distance to the object and is the shortest, from among the plurality of operation modes.
    Type: Grant
    Filed: September 19, 2019
    Date of Patent: January 16, 2024
    Assignee: KYOCERA Corporation
    Inventors: Tooru Sahara, Masamitsu Nishikido, Youhei Murakami
  • Patent number: 11867830
    Abstract: Examples disclosed herein relate to a beam steering vehicle radar for object identification. The radar includes a radar module having at least one beam steering transmit antenna to radiate one or more radio frequency (“RF”) beams in a plurality of directions, at least one beam steering receive antenna to receive one or more RF return signals, and a transceiver to generate radar data capturing a surrounding environment from the one or more received RF return signals. The radar also includes a perception module configured to detect and identify an object in the surrounding environment from the radar data. At least one of the beam steering transmit antenna has a side lobe reduction mechanism formed within a substrate to reduce side lobes in the radiated one or more RF beams.
    Type: Grant
    Filed: January 29, 2020
    Date of Patent: January 9, 2024
    Assignee: Metawave Corporation
    Inventor: Taha Shahvirdi Dizaj Yekan
  • Patent number: 11867800
    Abstract: The present invention relates to the field of device calibration technologies and discloses a sliding apparatus and an automobile calibration device. The sliding apparatus includes: a guide rail, which includes a first surface and a second surface that are perpendicular to each other, where the first surface is provided with a first sliding groove and the second surface is provided with a second sliding groove, the first sliding groove and the second sliding groove being disposed in parallel; and a plate body, a first sliding member and a second sliding member, where the first sliding member and the second sliding member are installed on the plate body. The first sliding member is movably installed in the first sliding groove and the second sliding member is movably installed in the second sliding groove, so that the plate body is slidable along the guide rail.
    Type: Grant
    Filed: November 3, 2020
    Date of Patent: January 9, 2024
    Assignee: AUTEL INTELLIGENT TECHNOLOGY CORP., LTD.
    Inventors: Biwang Lai, Xiaolong Wang
  • Patent number: 11867829
    Abstract: Examples disclosed herein relate to generating continuous visualizations of beam steering vehicle radar scans by acquiring data for a beam steering radar scan, generating a Range Doppler Map (“RDM”) corresponding to the acquired radar data, displaying a visualization of the RDM showing a plurality of identified objects, shifting each identified object by its velocity to generate a shifted RDM, and updating the visualization at a display rate that is higher than a radar scan rate to display continuous movement. The display may be part of an augmented reality system presented to a driver on a windshield or dashboard.
    Type: Grant
    Filed: January 7, 2021
    Date of Patent: January 9, 2024
    Assignee: Metawave Corporation
    Inventor: Matthew Paul Harrison
  • Patent number: 11860023
    Abstract: A radar sensor for measuring a fill level and/or a point level of a product in a container is described, including a sensor configured to emit and/or to receive a radar signal; evaluation circuitry configured to determine a measurement signal; a housing having at least one housing region configured such that the radar signal can be transmitted through the housing region; an adhesive surface including an adhesive material, configured to attach the radar sensor to the container wall, is disposed on the outside of the housing at least along a portion of an outer circumference of the housing region, and a sealing surface including a sealing material configured to at least partially seal the housing region when the radar sensor is attached to the container wall, the sealing surface being disposed on the outside of the housing at least along a portion of the outer circumference of the housing region.
    Type: Grant
    Filed: July 31, 2019
    Date of Patent: January 2, 2024
    Assignee: VEGA Grieshaber KG
    Inventor: Levin Dieterle
  • Patent number: 11860293
    Abstract: A device (112, 130) is configured to communicate data (108) on a radio channel (101, 105, 106) according to a radio access technology. The radio access technology comprises pilot signals and transmission blocks for the data (108). The device (112, 130) is further configured to participate in the radar probing (109) employing at least some of the pilot signals as radar probe pulses of the radar probing (109).
    Type: Grant
    Filed: June 1, 2016
    Date of Patent: January 2, 2024
    Assignee: Sony Group Corporation
    Inventors: Zhinong Ying, Thomas Bolin, Peter C. Karlsson, Erik Bengtsson
  • Patent number: 11860294
    Abstract: Techniques and apparatuses are described that implement electromagnetic vector sensors (EMVS) for a smart-device-based radar system. Instead of including an antenna array of similar antenna elements, the radar system includes two or more electromagnetic vector sensors. At least one of the electromagnetic vector sensors is used for transmission and at least another of the electromagnetic vector sensors is used for reception. Each electromagnetic vector sensor includes a group of antennas with different antenna patterns, orientations, and/or polarizations. An overall footprint of the two electromagnetic vector sensors (e.g., one for transmission and one for reception) can be smaller than antenna arrays used by other radar systems, thereby enabling the radar system to be implemented within space-constrained devices.
    Type: Grant
    Filed: August 24, 2021
    Date of Patent: January 2, 2024
    Assignee: Google LLC
    Inventors: Luzhou Xu, Jiang Zhu, Jaime Lien, David J. Weber
  • Patent number: 11860270
    Abstract: In an embodiment, a method for completing measurements for a uniform linear array from measurements from a sparse linear array is provided. The method includes: receiving a first set of measurements for a sparse linear array by a computing device; generating a second set of measurements for a uniform linear array from the first set of measurements by the computing device; and using matrix completion to determine values for a plurality of missing elements of the generated second set of measurements for the uniform linear array by the computing device.
    Type: Grant
    Filed: March 22, 2021
    Date of Patent: January 2, 2024
    Assignee: The Board of Trustees of The University of Alabama
    Inventor: Shunqiao Sun
  • Patent number: 11860297
    Abstract: A radar system and method include and employ a plurality of substantially identical transceiver sets establishing respective substantially identical, overlapping virtual antenna arrays. A first sub-array of widely spaced virtual antennas provides high angular resolution but high angular ambiguity. A second sub-array of narrowly spaced virtual antennas provides low angular ambiguity but low angular resolution.
    Type: Grant
    Filed: March 8, 2021
    Date of Patent: January 2, 2024
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Oded Bialer, Amnon Jonas
  • Patent number: 11852720
    Abstract: A vehicular radar sensing system includes a radar sensor disposed at a vehicle so as to sense exterior of the vehicle and having at least one transmitter that transmits radio signals and at least one receiver that receives radio signals. The radar sensor includes a transmitting wave guide antenna and a receiving wave guide antenna, a PCB, and a processor operable to process radio signals transmitted by the at least one transmitter and received by the at least one receiver. Each of the wave guide elements includes a respective wave guide slot disposed at the inboard side of the PCB, and another respective wave guide slot that guides the radio signals to or from the environment, and a respective air wave guide that guides the radio signals between the respective wave guide slots.
    Type: Grant
    Filed: September 26, 2022
    Date of Patent: December 26, 2023
    Assignee: Magna Electronics Inc.
    Inventors: Holger Hess, Wilhelm Johann Wolfgang Wöhlte
  • Patent number: 11846725
    Abstract: A radar apparatus installed in a vehicle includes a transceiver that transmits a radar signal to an outside of the vehicle and receives a radar signal reflected from an object; a signal processing unit that processes the reflected radar signal to detect the object; a fusion data generation unit that generates fusion data based on radar data and camera data; and a classification unit that classifies the detected object using an artificial intelligence module trained based on the generated fusion data.
    Type: Grant
    Filed: March 22, 2021
    Date of Patent: December 19, 2023
    Assignee: BITSENSING INC.
    Inventor: Jae Eun Lee
  • Patent number: 11846724
    Abstract: Herein disclosed is a method for radar detection of a valid target within a monitored zone with disturbing elements passing therethrough, e.g. process scraps of a machine on which the radar system is installed. The method includes transmitting, receiving and processing radar signals to locate and track the movement of a moving potential target. The method discriminates whether the potential target is valid or not, by checking whether the potential target has an initial position within a disturbance zone and whether it is detected for an overall detection time period that is less than the assessment time interval. If a target is not valid, it will be assimilated to background after it stops.
    Type: Grant
    Filed: June 8, 2021
    Date of Patent: December 19, 2023
    Assignee: Inxpect S.p.A.
    Inventors: Alessio Degani, Andrea Tartaro, Marco Garatti, Ugo Bertacchini
  • Patent number: 11846720
    Abstract: A divider control circuit outputs a divider control signal that is meant to increase the division ratio from a first division ratio through a second division ratio greater than the first division ratio to a third division ratio greater than the second division ratio and then return the division ratio through a fourth division ratio smaller than the third division ratio to a fifth division ratio smaller than the fourth division ratio and greater than the first division ratio. Moreover, control is exerted so that the absolute value of the time rate of change of the division ratio in the increase from the second division ratio to the third division ratio is smaller than the absolute value of the time rate of change of the division ratio in the increase from the first division ratio to the second division ratio.
    Type: Grant
    Filed: December 11, 2020
    Date of Patent: December 19, 2023
    Assignee: SOCIONEXT INC.
    Inventor: Joji Hayashi
  • Patent number: 11846698
    Abstract: An object detection apparatus includes an irradiator configured to irradiate a detection wave, a detector configured to detect a reflected wave of the detection wave, and a controller configured to estimate an arrival direction and a flight distance of the reflected wave. The controller is configured to perform an object detection process on a detection result of the reflected wave only when the arrival direction and the flight distance are included in a detection target range.
    Type: Grant
    Filed: February 4, 2019
    Date of Patent: December 19, 2023
    Assignee: KYOCERA Corporation
    Inventors: Masamitsu Nishikido, Yukitoshi Kanayama, Sunao Hashimoto
  • Patent number: 11845376
    Abstract: Provided is a radar and light emission assembly for emitting light and radar radiation and for detecting at least reflected radar radiation including: a headlight including a light-transparent headlight cover, and a light source, and a light reflector; a radar module, which is arranged behind the headlight cover, integrated in the headlight and including a radar antenna unit. The radar and light emission assembly has at least one radar radiation-forming mechanism, in particular a frequency-selective radar radiation-forming mechanism, including a radar radiation-forming mechanism, which is integrated in the headlight cover. The application of the radar technology, integrated in the headlight, can be further optimized hereby. The invention further relates to a method and a use for a radar and light emission assembly of this type.
    Type: Grant
    Filed: October 16, 2019
    Date of Patent: December 19, 2023
    Assignees: Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e. V., Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen
    Inventors: Manuela Junghähnel, Thomas Preussner, Sebastian Winkler, Sofian Hamid, Korbinian Schraml, Jörg Pamp, Dirk Heberling, Christian Hördemann, Ludwig Pongratz, Patrick Gretzki, Arnold Gillner
  • Patent number: 11841416
    Abstract: A radar system for a vehicle, having at least two transmission antennas, each for emitting a transmission signal into the surroundings of the vehicle, at least four reception antennas, each for acquiring a detection signal for detecting targets in the surrounding of the vehicle, and a processing device for determining the viewing angle, in order to assign phase information in the detection signals to at least one viewing angle for respective detected targets, such that a minimum ambiguous range of the reception antennas in a first direction is specific for the assignment to be ambiguous to more than one viewing angle, wherein all of the reception antennas are spaced apart from each other in the first direction by different distances such that only one of the distances corresponds to the minimum ambiguous range.
    Type: Grant
    Filed: April 5, 2021
    Date of Patent: December 12, 2023
    Inventors: Muhammed Soubhi Al Kadi, Tobias Breddermann, Ridha Farhoud, Tai Fei, Christopher Grimm, Ernst Warsitz