Patents Examined by Peter Novak
  • Patent number: 10355603
    Abstract: In one general aspect, a control circuit for a power converter can include a feedback terminal configured to be coupled to a non-isolated feedback of the power converter when a feedback of the power converter is the non-isolated feedback, or configured to be coupled to a ground when the feedback of the power converter is an isolated feedback. The control circuit can include a detection circuit, coupled to the feedback terminal. The detection circuit can be configured to trigger a feedback voltage at the feedback terminal within an initial setting of the power converter. The feedback voltage can be high in response to the feedback terminal being coupled to the feedback of the power converter, and the feedback voltage can be low in response to the feedback terminal being coupled to the ground of the power converter.
    Type: Grant
    Filed: August 10, 2017
    Date of Patent: July 16, 2019
    Assignee: Semiconductor Components Industries, LLC
    Inventors: Mao-Sheng Lin, Chen-Hua Chiu, Guangchao Zhang
  • Patent number: 10284077
    Abstract: A Power Factor Correction (PFC) controller includes an error amplifier for amplifying a difference between Vout and intended Vout to provide a power demand (Pdem) output at a compensation pin. A burst mode controller includes soft-start circuitry coupled to receive Pdem and to a drive pin which provides pulses to a control node of a power switch of a DC-DC converter during burst periods. The pulses slow ramping of line current over a first 2 to 36 switching cycles at a beginning of bursts when energizing the inductor to reduce a line current slope as compared to without ramping up, and for slowing ramping down of line current over the last 2 to 36 switching cycles to reduce a line current slope when de-energizing the inductor as compared to a line current without ramping down. The PFC controller does not utilize zero-crossings of the line voltage for burst period synchronization.
    Type: Grant
    Filed: October 17, 2017
    Date of Patent: May 7, 2019
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Joseph Michael Leisten, Ananthakrishnan Viswanathan, Philomena Cleopha Brady, Brent Alan McDonald
  • Patent number: 10263533
    Abstract: An improved gated thyristor that utilizes less silicon area than IGBT, BIPOLARs or MOSFETs sized for the same application is provided. Embodiments of the inventive thyristor have a lower gate charge, and a lower forward drop for a given current density. Embodiments of the thyristor once triggered have a latch structure that does not have the same Cgd or Ceb capacitor that must be charged from the gate, and therefore the gated thyristor is cheaper to produce, and requires a smaller gate driver, and takes up less space than standard solutions. Embodiments of the inventive thyristor provide a faster turn off speed than the typical >600 ns using a modified MCT structure which results in the improved tail current turn off profile (<250 ns). Additionally, series resistance of the device is reduced without comprising voltage blocking ability is achieved. Finally, a positive only gate drive means is taught as is a method to module the saturation current using the gate terminal.
    Type: Grant
    Filed: August 17, 2015
    Date of Patent: April 16, 2019
    Inventor: David Schie
  • Patent number: 10251428
    Abstract: A driving module for an electronic cigarette is provided. The electronic cigarette includes a casing, a mouthpiece, a sensing unit, an atomization component, a liquid storage component and a fluid transportation device. The driving module includes a battery, a connection interface, a power board and a control board. According to a control signal, a voltage of the driving power is converted into a specified voltage, and a driving signal is generated according to the specified voltage. According to the driving signal, the driving power with the specified voltage value is provided to the fluid transportation device to enable the fluid transportation device to transfer the cigarette liquid to the atomization component, and the driving power with the specified voltage value is provided to the atomization component to enable the atomization component to atomize the cigarette liquid and generate an atomized vapor.
    Type: Grant
    Filed: May 22, 2018
    Date of Patent: April 9, 2019
    Assignee: MICROJET TECHNOLOGY CO., LTD.
    Inventors: Ching-Sung Lin, Shih-Chang Chen, Li-Pang Mo, Chi-Jung Chen, Chi-Feng Huang, Hsuan-Kai Chen
  • Patent number: 10229869
    Abstract: A semiconductor device has a configuration in which a high-side module portion and a low-side module portion overlap each other. The semiconductor device further includes a control-side frame extending across the high-side module portion and the low-side module portion, and having a high-side integrated circuit and a low-side integrated circuit placed thereon. The high-side integrated circuit of the high-side module portion and the low-side integrated circuit of the low-side module portion are placed on one main surface of the control-side frame. At a boundary between the high-side module portion and the low-side module portion, the control-side frame is bent such that the high-side semiconductor chip and the low-side semiconductor chip face each other.
    Type: Grant
    Filed: August 30, 2017
    Date of Patent: March 12, 2019
    Assignee: Mitsubishi Electric Corporation
    Inventors: Seiya Sugimachi, Masataka Shiramizu
  • Patent number: 10224825
    Abstract: A power converter includes a primary-side switching circuit, a resonant circuit, a transformer including primary and secondary windings, a secondary-side rectifying circuit, voltage and current sensing circuits, and a processing circuit. The primary-side switching circuit controls switches to be on or off based on a pulse signal to convert an input voltage to a square wave signal. The resonant circuit is coupled to the primary-side switching circuit and receives the square wave signal to provide a primary-side current. The primary winding is coupled to the resonant circuit. The secondary-side rectifying circuit is coupled to the secondary winding and rectifies the secondary ac signal output by the secondary winding and outputs an output voltage. The voltage and current sensing circuits detect the voltage and current of the primary winding and output voltage and current sensing signals. The processing circuit outputs the pulse signal according to the voltage and current sensing signals.
    Type: Grant
    Filed: November 1, 2017
    Date of Patent: March 5, 2019
    Assignee: DELTA ELECTRONICS, INC.
    Inventor: Yu-Ming Chang
  • Patent number: 10211745
    Abstract: A first winding, a second winding, a fourth winding, and a fifth winding functioning as a transformer are wound around respective side legs of a three-leg core. Third windings functioning as a DC reactor are wound around a center leg. Winding directions of the first winding, the second winding, and the third windings are set so that magnetic fluxes generated by DC currents flowing through the respective windings merge in the same direction at the center leg, and winding directions of the fourth winding and the fifth winding are set so that magnetic fluxes generated by AC currents flowing through the respective windings cancel each other at the center leg. Thus, the transformer and the DC reactor are integrated using the three-leg core, whereby size reduction and loss reduction of the integrated magnetic component are achieved.
    Type: Grant
    Filed: October 11, 2016
    Date of Patent: February 19, 2019
    Assignee: Mitsubishi Electric Corporation
    Inventors: Satoshi Murakami, Masaki Yamada, Ryota Kondo, Takaaki Takahara, Yuta Komatsu
  • Patent number: 10211742
    Abstract: Soft switching in Boundary Conduction Mode (BCM) flyback converters using a fixed dead time is presented. Embodiments disclosed herein relate to switching circuits and more particularly to soft switching in single stage isolated flyback converters with single switch. Embodiments herein disclose systems for soft switching in single stage isolated flyback converters by combining selection of transformers turn ratio and by incorporating the fixed dead time.
    Type: Grant
    Filed: October 26, 2017
    Date of Patent: February 19, 2019
    Inventors: Nagesh Vangala, Rayudu Mannam
  • Patent number: 10205382
    Abstract: A method for adapting a dead time between the beginning of ab opening process of a first switching element and the beginning of a closing process of a second, serially connected switching element in a switching regulator of a switching power supply unit. The method includes the following steps: a measurement voltage across the second switching element is measured, and the dead time is varied such that the deviation of the measured measurement voltage from a target value of the measurement voltage is minimized or limited. The first and second switching elements are actuated using the thus ascertained dead time. There is also described a device for carrying out such a method. The device includes a measuring unit, a processing unit, and a control unit.
    Type: Grant
    Filed: June 10, 2015
    Date of Patent: February 12, 2019
    Assignee: Conti Temic microelectronic GmbH
    Inventors: Diego Antongirolami, Goeran Schubert
  • Patent number: 10199948
    Abstract: A secondary controller applied to a secondary side of a power converter includes a detector and a standby signal generation circuit. The detector is used for detecting a first signal and a second signal of a universal serial bus device, and a frequency of a synchronization signal corresponding to a primary side of the power converter. The standby signal generation circuit is coupled to the detector for delaying a first predetermined time to generate a standby signal to a primary controller of the primary side of the power converter when the detector fails to detect the first signal and the second signal, and the frequency of the synchronization signal is less than a first predetermined frequency, wherein the primary controller enters a standby mode according to the standby signal.
    Type: Grant
    Filed: April 30, 2018
    Date of Patent: February 5, 2019
    Assignee: Leadtrend Technology Corp.
    Inventors: Yao-Tsung Chen, Mao-Shih Li, San-Yi Li, Hung-Ching Lee
  • Patent number: 10198014
    Abstract: A low dropout regulator produces output at an intermediate node. A resistive divider is coupled between the intermediate node and ground and provides a feedback signal to the low dropout regulator. A transistor has a first conduction terminal coupled to the intermediate node and a second conduction terminal coupled to an output node. A first impedance is coupled to the output node, a first switch selectively couples the first impedance to a supply node, a second impedance coupled to the output node, and a second switch selectively couples the second impedance to a ground node. Control circuitry is coupled to the control terminal of the transistor and to control terminals of the first and second switches. The control circuitry switches the electronic device to a power down mode by turning off transistor, closing the first and second switches, and turning off the low dropout regulator.
    Type: Grant
    Filed: March 31, 2017
    Date of Patent: February 5, 2019
    Assignee: STMicroelectronics International N.V.
    Inventors: Kapil Kumar Tyagi, Nitin Gupta
  • Patent number: 10199935
    Abstract: Various examples are provided for hybrid boosting converters (HBCs). In one example, a HBC includes an inductive switching core and a bipolar voltage multiplier (BVM) coupled to the inductive switching core. In another example, a HBC micro-inverter includes an inductive switching core coupled to an input voltage; a BVM comprising a positive branch and a negative branch coupled to the inductive switching core; and a switched bridge coupled across the positive and negative branches of the BVM. In another example, a 3D HBC includes a common axis comprising a series of capacitors; and a plurality of parallel wings coupled to the common axis. The parallel wings form a BVM when coupled to the common axis and include an inductive switching core that is coupled to an input voltage. The common axis can include a single input voltage or multiple input voltages can be coupled through the wings.
    Type: Grant
    Filed: September 11, 2015
    Date of Patent: February 5, 2019
    Assignee: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Bin Wu, Keyue Smedley
  • Patent number: 10193466
    Abstract: A method for controlling a modular multilevel converter to reduce the lower order harmonics generated by the converter is provided. The method may also reduce the overall switching loss of the converter by switching the switches close to fundamental switching frequencies while still reducing the lower order harmonics that are generated.
    Type: Grant
    Filed: May 18, 2015
    Date of Patent: January 29, 2019
    Assignee: ABB SCHWEIZ AG
    Inventors: Aravind Mohanaveeramani, Jean-Philippe Hasler, Suman Maiti
  • Patent number: 10193456
    Abstract: A PWM controller in a switching mode power supply provides to a power switch a PWM signal determining an ON time and an OFF time. A peak detector detects a voltage peak of a line voltage generated by rectifying an alternating-current input voltage. An OFF-time control unit controls the PWM signal and determines the OFF time in response to a compensation voltage, which is in response to an output voltage of the switching mode power supply. An ON-time control unit controls the PWM signal and determines the ON time in response to the compensation voltage and the voltage peak. The ON-time control unit is configured to make the ON time not less than a minimum ON time, and the minimum ON time is determined in response to the voltage peak.
    Type: Grant
    Filed: May 29, 2017
    Date of Patent: January 29, 2019
    Assignee: LEADTREND TECHNOLOGY CORPORATION
    Inventors: Wei Cheng Su, Chi Pin Chen
  • Patent number: 10186973
    Abstract: A multi-mode controller applied to a power converter includes a detection range generation module and a gate signal generation unit. The detection range generation module is used for generating a comparison voltage according to a reference current, and generating a detection signal according to the comparison voltage and a first reference voltage. When the detection signal is disabled by a zero-crossing signal, the gate signal generation unit generates a gate control signal corresponding to a quasi-resonant mode of the power converter according to the zero-crossing signal; and when the detection signal is disabled by a continuous-conduction mode signal generated by the detection range generation module according to the comparison voltage and a second reference voltage, the gate signal generation unit generates the gate control signal corresponding to a continuous-conduction mode of the power converter according to the continuous-conduction mode signal.
    Type: Grant
    Filed: January 4, 2017
    Date of Patent: January 22, 2019
    Assignee: Leadtrend Technology Corp.
    Inventors: Ming-Chang Tsou, Chih-Chi Chang
  • Patent number: 10181788
    Abstract: Various implementations described herein are directed to an integrated circuit. The integrated circuit may include a first voltage source providing a first voltage having a first polarity. The integrated circuit may include a second voltage source providing a second voltage having a second polarity that is opposite the first polarity. The integrated circuit may include a first circuit portion configured to receive the first and second voltages and provide one or more feedback voltages. The integrated circuit may include a second circuit portion configured to receive the first and second voltages along with the one or more feedback voltages and provide an output voltage that is proportional to the first voltage based on a rational conversion ratio that is derived by selection of at least one of the first and second voltages and the one or more feedback voltages.
    Type: Grant
    Filed: January 29, 2016
    Date of Patent: January 15, 2019
    Assignee: The Regents of the University of Michigan
    Inventors: Wanyeong Jung, Dennis Michael Chen Sylvester, David Theodore Blaauw
  • Patent number: 10175278
    Abstract: An output capacitor of a switching converter filters the triangular current waveform output by an inductor. An auxiliary capacitor, having a capacitance that is much smaller than a capacitance of the output capacitor, is coupled in parallel with the output capacitor so as to conduct a portion of the inductor current. A slope detector circuit determines a slope of the auxiliary capacitor current, and outputs a slope signal corresponding to the slope. A process circuit receives the slope signal and a signal corresponding to the inductor current. Since the auxiliary capacitor current slope is known, along with the auxiliary capacitance value and inductor current, the process circuit can derive the value of the output capacitor by applying a scaling factor. The derived value can be used to dynamically tweak the compensation of the feedback loop or identify a failure of the output capacitor.
    Type: Grant
    Filed: April 23, 2018
    Date of Patent: January 8, 2019
    Assignee: LINEAR TECHNOLOGY HOLDING LLC
    Inventor: Vikas V. Paduvalli
  • Patent number: 10164548
    Abstract: A power rectifier rectifies alternating electric current by using a controller in the power rectifier to control a first delay circuit in the power rectifier to turn on a high side switch in the power rectifier, wherein the high side switch provides a path for power from an input voltage line of the power rectifier to an output voltage line of the power rectifier. The controller controls a second delay circuit in the power rectifier to maintain the high side switch in an on state to change a switching state of the high side switch based on detection, by a current inversion detector, of a current inversion associated with the input and output voltage lines of the power rectifier.
    Type: Grant
    Filed: June 30, 2016
    Date of Patent: December 25, 2018
    Assignee: Marvell World Trade Ltd.
    Inventors: Giuseppe De Vita, Alessandro Savo, Luca Collamati, Maurizio Costagliola
  • Patent number: 10164547
    Abstract: A method and a system for controlling a rectifier can obtain a predicted switching interval. The method includes steps of: receiving frequency information and line information of a power generator, the line information including a switching point where a voltage or current crosses zero and a switching interval based on the frequency information; obtaining a predicted switching interval according to the frequency information and the line information, and obtaining a feedback signal according to two terminals of at least one component of the rectifier; and switching a switching signal of the rectifier within the predicted switching interval according to the feedback signal.
    Type: Grant
    Filed: August 3, 2017
    Date of Patent: December 25, 2018
    Assignee: Industrial Technology Research Institute
    Inventors: Po-Ting Yeh, Yuan-Tai Chang, Kai-Cheung Juang
  • Patent number: 10164514
    Abstract: Noise-free control circuit and control method for controlling a switching converter to avoid generating audile noises. The noise-free control circuit has a timer used to set a noise-free frequency threshed. When the switching frequency of the switching converter is decreased to the noise-free frequency threshold, the switching frequency of the switching converter is limited to the noise-free frequency threshold. The noise-free frequency threshold is higher than a maximum audible frequency of an audio noise.
    Type: Grant
    Filed: July 13, 2017
    Date of Patent: December 25, 2018
    Assignee: Chengdu Monolithic Power Systems Co., Ltd.
    Inventor: Lei Li