Patents Examined by Phillip S. Green
  • Patent number: 7429747
    Abstract: A group III-V material CMOS device may have NMOS and PMOS portions that are substantially the same through several of their layers. This may make the CMOS device easy to make and prevent coefficient of thermal expansion mismatches between the NMOS and PMOS portions.
    Type: Grant
    Filed: November 16, 2006
    Date of Patent: September 30, 2008
    Assignee: Intel Corporation
    Inventors: Mantu K. Hudait, Suman Datta, Jack T. Kavalieros, Mark L. Doczy, Robert S. Chau
  • Patent number: 7419861
    Abstract: To form a polycrystalline silicon film having a grain size of 1 ?m or greater by means of laser annealing. A beam emitted from a laser apparatus (101) is split in two by a half mirror. The split beams are processed into linear shapes by cylindrical lenses (102) to (105), and (207), then simultaneously irradiate an irradiation surface (209). If an amorphous silicon film formed on a glass substrate is disposed on the irradiation surface (209), an area will be irradiated by both a linear shape beam entering from a front surface and a linear shape beam that has transmitted through the glass surface. Both linear shape beams irradiate the same area to thereby crystallize the amorphous silicon film.
    Type: Grant
    Filed: June 22, 2005
    Date of Patent: September 2, 2008
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Koichiro Tanaka, Shunpei Yamazaki, Ritsuko Kawasaki
  • Patent number: 7413924
    Abstract: A process for forming a catalyst layer for carbon nanotube growth comprising forming a catalyst layer having a first and second portion over one of a cathode metal layer or a ballast resistor layer; patterning a photoresist over the first portion; etching the second portion with a chlorine/argon plasma; removing the photoresist with an ash process; and removing the veils and preparing the surface for carbon nanotube growth with a semi-aqueous hydroxylamine solution.
    Type: Grant
    Filed: October 31, 2005
    Date of Patent: August 19, 2008
    Assignee: Motorola, Inc.
    Inventors: Donald F. Weston, William J. Dauksher, Emmett M. Howard
  • Patent number: 7407893
    Abstract: Methods are provided for depositing amorphous carbon materials. In one aspect, the invention provides a method for processing a substrate including positioning the substrate in a processing chamber, introducing a processing gas into the processing chamber, wherein the processing gas comprises a carrier gas, hydrogen, and one or more precursor compounds, generating a plasma of the processing gas by applying power from a dual-frequency RF source, and depositing an amorphous carbon layer on the substrate.
    Type: Grant
    Filed: February 24, 2005
    Date of Patent: August 5, 2008
    Assignee: Applied Materials, Inc.
    Inventors: Martin Jay Seamons, Wendy H. Yeh, Sudha S. R. Rathi, Deenesh Padhi, Andy (Hsin Chiao) Luan, Sum-Yee Betty Tang, Priya Kulkarni, Visweswaren Sivaramakrishnan, Bok Hoen Kim, Hichem M'Saad, Yuxiang May Wang, Michael Chiu Kwan
  • Patent number: 7390714
    Abstract: Disclosed herein is a method of manufacturing semiconductor devices. The method includes the steps of forming a gate oxide film, a polysilicon film and a nitride film on a semiconductor substrate, and patterning the gate oxide film, the polysilicon film and the nitride film to form poly gates, forming a spacer at the side of the poly gate, forming a sacrifice nitride film on the entire surface, and then forming an interlayer insulation film on the entire surface, polishing the sacrifice nitride film formed on the interlayer insulation film and the poly gates so that the nitride film is exposed, removing top portions of the sacrifice nitride film while removing the nitride film, forming an insulation film spacer at the side exposed through removal of the nitride film, and filling a portion from which the sacrifice oxide film is removed with an insulation film, and forming the tungsten gates in portions from which the nitride films are moved.
    Type: Grant
    Filed: December 6, 2005
    Date of Patent: June 24, 2008
    Assignee: Hynix Semiconductor Inc.
    Inventors: Cheol Mo Jeong, Whee Won Cho, Jung Geun Kim
  • Patent number: 7388288
    Abstract: Interconnect metallization schemes and devices for flip chip bonding are disclosed and described. Metallization schemes include an adhesion layer, a diffusion barrier layer, a wetable layer, and a wetting stop layer. Various thicknesses and materials for use in the different layers are disclosed and are particularly useful for metallization in implantable electronic devices such as neural electrode arrays.
    Type: Grant
    Filed: December 1, 2006
    Date of Patent: June 17, 2008
    Assignees: University of Utah Research Foundation, Fraunhofer-Gesellschaft zur Foerderung der angewan
    Inventors: Florian Solzbacher, Reid Harrison, Richard A. Normann, Hans-Hermann Oppermann, Lothar Dietrich, Matthias Klein, Michael Töpper
  • Patent number: 7381628
    Abstract: A process for producing a tube suitable for microfluidic devices. The process uses first and second wafers, each having a substantially uniform doping level. The first wafer has a first portion into which a channel is etched partially therethrough between second and third portions of the first wafer. The first wafer is then bonded to the second wafer so that a first portion of the second wafer overlies the first portion of the first wafer and encloses the channel to define a passage. The second wafer is then thinned so that the first portion thereof defines a thinned wall of the passage. Second and third portions of the second wafer and part of the second and third portions of the first wafer are then removed, and the thinned wall defined by the second wafer is bonded to a substrate such that the passage projects over a recess in the substrate surface. The second and third portions of the first wafer are then removed to define a tube with a freestanding portion.
    Type: Grant
    Filed: February 20, 2006
    Date of Patent: June 3, 2008
    Assignee: Integrated Sensing Systems, Inc.
    Inventors: Douglas Ray Sparks, Nader Najafi
  • Patent number: 7348200
    Abstract: The invention provides a method of growing a non-polar a-plane gallium nitride. In the method, first, an r-plane substrate is prepared. Then, a low-temperature nitride-based nucleation layer is deposited on the substrate. Finally, the non-polar a-plane gallium nitride is grown on the nucleation layer. In growing the non-polar a-plane gallium nitride, a gallium source is supplied at a flow rate of about 190 to 390 ?mol/min and the flow rate of a nitrogen source is set to produce a V/III ratio of about 770 to 2310.
    Type: Grant
    Filed: March 3, 2006
    Date of Patent: March 25, 2008
    Assignees: Samsung Electro-Mechanics Co. Ltd., The University of Tokushima
    Inventors: Soo Min Lee, Rak Jun Choi, Naoi Yoshiki, Sakai Shiro, Masayoshi Koike
  • Patent number: 7344996
    Abstract: Plasma etch processes incorporating helium-based etch chemistries can remove dielectric a semiconductor applications. In particular, high density plasma chemical vapor etch-enhanced (deposition-etch-deposition) gap fill processes incorporating etch chemistries which incorporate helium as the etchant that can effectively fill high aspect ratio gaps while reducing or eliminating dielectric contamination by etchant chemical species.
    Type: Grant
    Filed: June 22, 2005
    Date of Patent: March 18, 2008
    Assignee: Novellus Systems, Inc.
    Inventors: Chi-I Lang, Wenxian Zhu, Ratsamee Limdulpaiboon, Judy H. Huang
  • Patent number: 7323371
    Abstract: The present invention relates to a process for vapor depositing a low dielectric insulating film, a thin film transistor using the same, and a preparation method thereof, and more particularly to a process for vapor deposition of low dielectric insulating film that can significantly improve a vapor deposition speed while maintaining properties of the low dielectric insulating film, thereby solving parasitic capacitance problems to realize a high aperture ratio structure, and can reduce a process time by using silane gas when vapor depositing an insulating film by a CVD or PECVD method to form a protection film for a semiconductor device. The present invention also relates to a thin film transistor using the process and preparation method thereof.
    Type: Grant
    Filed: March 3, 2005
    Date of Patent: January 29, 2008
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sung-Hoon Yang, Wan-Shick Hong, Kwan-Wook Jung
  • Patent number: 7180130
    Abstract: In a method of fabricating a semiconductor device having a MISFET of trench gate structure, a trench is formed from a major surface of a semiconductor layer of first conductivity type which serves as a drain region, in a depth direction of the semiconductor layer, a gate insulating film including a thermal oxide film and a deposited film is formed over the internal surface of the trench, and after a gate electrode has been formed in the trench, impurities are introduced into the semiconductor substrate of first conductivity type to form a semiconductor region of second conductivity type which serves as a channel forming region, and impurities are introduced into the semiconductor region of second conductivity type to form the semiconductor region of first conductivity type which serves as a source region.
    Type: Grant
    Filed: September 24, 2004
    Date of Patent: February 20, 2007
    Assignees: Renesas Technology Corp., Hitachi ULSI Systems Co., Ltd.
    Inventors: Sumito Numazawa, Yoshito Nakazawa, Masayoshi Kobayashi, Satoshi Kudo, Yasuo Imai, Sakae Kubo, Takashi Shigematsu, Akihiro Ohnishi, Kozo Uesawa, Kentaro Oishi
  • Patent number: 7179701
    Abstract: A semiconductor device provides a gate structure that includes a conductive portion and a high-k dielectric material formed beneath and along sides of the conductive material. An additional gate dielectric material such as a gate oxide may be used in addition to the high-k dielectric material. The method for forming the structure includes forming an opening in an organic material, forming the high-k dielectric material and a conductive material within the opening and over the organic material then using chemical mechanical polishing to remove the high-k dielectric material and conductive material from regions outside the gate region.
    Type: Grant
    Filed: September 21, 2004
    Date of Patent: February 20, 2007
    Assignee: Taiwan Semiconductor Manufacturing Company
    Inventors: Ju-Wang Hsu, Jyu-Horng Shieh, Ju-Chien Chiang