Patents Examined by R Alejandro
  • Patent number: 6740437
    Abstract: A cogeneration fuel cell system and associated methods of operation are provided that accommodate a demand for heat as well as a demand for electric power. The system is operated among various modes to balance heat and power demand signals. In general, a fuel cell system is coupled to a power sink and a heat sink, and a controller is adapted to respond to data signals from the power sink and the heat sink. As examples, such data signals from the heat sink may include a temperature indication or a heat demand signal (such as from a thermostat), and such data signals from the power sink may include a voltage or current measurement, an electrical power demand signal, or an electrical load.
    Type: Grant
    Filed: May 30, 2002
    Date of Patent: May 25, 2004
    Assignee: Plug Power Inc.
    Inventors: Arne W. Ballantine, Ryan Hallum, John W. Parks, Dustan L. Skidmore
  • Patent number: 6730430
    Abstract: The present invention relates to an explosion-proof safety structure for column shape lithium battery, particularly relates to a safe and explosion-preventing structure which prevents the battery from ignition or explosion caused by the condition of overcharging described as follows: while the lithium battery is under overcharging condition, a sudden rise of the battery internal temperature takes place and the pressure increases; at the beginning of the sudden rise of temperature, the internal resistance value of the positive temperature coefficient of resistivity board redoubles to slow down the input of current; when the temperature keeps on rising, the electrolyte starts to gasify so as to increase the internal pressure of the battery up to a level which exceeds what the breaker sheet thin portion can take, the thin portion of the breaker sheet breaks to cause an open charging circuit and the charging activity stops; however, the battery internal pressure can not be released, which once exceeds the break p
    Type: Grant
    Filed: July 9, 2001
    Date of Patent: May 4, 2004
    Assignee: Nan Ya Plastics Corporation
    Inventor: Chin Lung Chang
  • Patent number: 6713212
    Abstract: A solid, gel type non-aqueous electrolyte for use in an electrochemical cell, the electrolyte including: (a) at least one polymer compound; (b) at least one organic solvent, and (c) at least one electrolytically active salt represented by the formula: M′(ZRnXq-n)m in which: M′ is selected from the group consisting of magnesium, calcium, and aluminum; Z is selected from the group consisting of aluminum, boron, phosphorus, antimony and arsenic; R represents radicals selected from the following groups: alkyl, alkenyl, aryl, phenyl, benzyl, and amido; X is a halogen (I, Br, Cl, F); m=2-3; n=0-5 and q=6 for Z=phosphorus, antimony, and arsenic, and n=0-3 and q=4 for Z=aluminum and boron, wherein the polymer compound, organic solvent, and electrolytically active salt interact to form a non-aqueous electrolyte having a solid, gel type structure.
    Type: Grant
    Filed: June 1, 2001
    Date of Patent: March 30, 2004
    Assignee: Bar-Ilan University
    Inventors: Doron Aurbach, Orit Chasid, Yossi Gofer, Chaiim Gizbar
  • Patent number: 6706434
    Abstract: Reforming fuel and oxidizing agent are first supplied to the reformer when the system is started, and a rise in temperature by a partial oxidation reaction is begun. Furthermore, the reforming fuel and the oxidizing agent are supplied to a combustor, and a rise in temperature of the combustor is begun simultaneously with the rise in the temperature of the reformer.
    Type: Grant
    Filed: February 13, 2001
    Date of Patent: March 16, 2004
    Assignee: Nissan Motor Co., Ltd.
    Inventor: Tousaku Takamura
  • Patent number: 6703162
    Abstract: In case of a conventional battery having a laminated sheet material as a battery case for storing a battery body, the metal foil on the laminated sheet does not contact to either a positive electrode or a negative electrode and electric potential is unstable. Therefore, there was a problem that it was impossible to obtain electrical shielding effect. In order to maintain the function of the sealed part in the battery case, an extended part extended from the sealed part is disposed at a position where it overlaps with the positive electrode lead or the negative electrode lead, and by jointing the lead and the extended part with the conductive material piercing therethrough, the metal foil on the laminated sheet material of the battery case is electrically connected to the lead to maintain the electric potential of the battery case to the electric potential of the positive electrode or the negative electrode.
    Type: Grant
    Filed: March 23, 2001
    Date of Patent: March 9, 2004
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventors: Hisashi Shiota, Hiroaki Urushibata, Shinji Nakadeguchi, Masaharu Moriyasu, Syoji Yoshioka, Hiroiti Ishida, Kiyoshi Hanafusa
  • Patent number: 6703153
    Abstract: An electrical power generating device having a plurality of ceramic composite cells, each cell having a cathode and an anode. A thermal shell in which the ceramic composite cells are stacked or arranged in electrical series and gas parallel surrounded by shock absorbing and insulating materials, respectively, is preferably included. Also provided are an exhaust fan, thermocouple sensors, a fuel supply, a programmable computer controller with user interface, and a container supporting the assembly and having passageways for providing air ingress and egress to the device, and power output terminals for the electrical power from the device. Methods for manufacturing the ceramic composite cells are also provided, including a method for manufacturing stabilized zirconia and for use in the ceramic materials used within the ceramic composite cell.
    Type: Grant
    Filed: June 12, 2000
    Date of Patent: March 9, 2004
    Assignee: IGR Enterprises
    Inventors: Esin Cubukcu, Steve Dahar, Ravi Dodeja, Arnold Z. Gordon, Daniel Kalynchuk, Troy Shannon Prince, Justin Soltesz, Mike Waite, Sandeep Chawla
  • Patent number: 6699623
    Abstract: Graphite sheeting having a thickness of less than 250 micrometers and in-plane conductivity of at least 100 S/cm when employed as a cathode current collector in a lithium or lithium ion cell containing a fluorinated lithium imide or methide electrolyte salt imparts high thermal resistance, excellent electrochemical stability, and surprisingly high capacity retention at high rates of discharge.
    Type: Grant
    Filed: October 6, 2000
    Date of Patent: March 2, 2004
    Assignee: E. I. du Pont de Nemours and Company
    Inventor: Hongli Dai
  • Patent number: 6699609
    Abstract: A fuel cell system includes a fuel cell in which a first reactant gas and a second reactant gas are supplied to generate electricity. An evaporator evaporates a raw fuel, which combustor exhaust gas discharged from the fuel cell and uses the exhaust gas to evaporate and volatile a raw material for the first reactant gas. A reformer reforms the evaporated and volatilized raw fuel vapor of the raw material by a reforming catalyst to produce the first reactant gas. An air-introducing device introduces the air that is used to be reformed into the evaporator or the reformed in a manner wherein the flow rate of the air is controlled depending upon the output from the fuel cell and upon the temperature of the raw fuel vapor.
    Type: Grant
    Filed: October 12, 2001
    Date of Patent: March 2, 2004
    Assignee: Honda Giken Kogyo Kabushiki Kaisha
    Inventors: Yasunori Kotani, Hikaru Okada, Nobutaka Nakajima, Seiji Tonegawa, Minoru Uoshima
  • Patent number: 6696201
    Abstract: An electrochemical cell comprising an anode of a Group IA metal and a cathode of a mixed phase metal oxide prepared from a combination of starting materials comprising vanadium oxide and a mixture of at least one of a decomposable silver-containing constituent and a decomposable copper-containing constituent is described. The starting materials are mixed together to form a homogeneous admixture that is not further mixed once decomposition heating begins. The resulting cathode material is particularly useful for implantable medical applications.
    Type: Grant
    Filed: October 26, 2001
    Date of Patent: February 24, 2004
    Assignee: Wilson Greatbatch Ltd.
    Inventors: Randolph A. Leising, Esther S. Takeuchi
  • Patent number: 6692866
    Abstract: The present invention provides a lamination type secondary battery, in which accurate positioning can be performed for positive electrodes and negative electrodes arranged face-to-face to each other. The invention provides a lamination type secondary battery, which comprises positive electrodes and negative electrodes having different surface areas, said positive electrodes and said negative electrodes being laminated on each other with a separator between them, each of the electrodes having smaller surface area is arranged at the center with equal spacing from outer periphery of a separator main body and is covered with the separator main body, and outer periphery of each of the electrodes having larger surface area is equal in size with outer periphery of the separator main body to cover the electrode having smaller surface area.
    Type: Grant
    Filed: February 25, 2002
    Date of Patent: February 17, 2004
    Assignees: NEC Mobile Energy Corporation, NEC Corporation
    Inventors: Hideto Watanabe, Katsuichi Mogami, Eiko Motegi
  • Patent number: 6692862
    Abstract: By realizing or installing check valve liquid vein interrupters in each compartment of the battery the phenomenon of slow discharge of the retained volumes of electrolytes during long periods of inactivity of a redox flow battery, with the electrolyte pumps stopped altogether, can be practically eliminated with the effect that the battery is perfectly ready to deliver electric power immediately upon request even after prolonged periods of inactivity. Moreover, the presence of liquid vein interrupters on each compartment in either an outlet or an inlet port substantially preventing by-pass current during a not pumping phase, permits to increase the by pumping the electrolytes through the compartments of a battery stack intermittently, in other words in a pulsed manner, with a certain duty-cycle.
    Type: Grant
    Filed: November 30, 2001
    Date of Patent: February 17, 2004
    Assignee: Squirrel Holdings Ltd.
    Inventor: Andrea Zocchi
  • Patent number: 6692851
    Abstract: A control method for monitoring a fuel cell stack in a fuel cell system in which the actual voltage and actual current from the fuel cell stack are monitored. A preestablished relationship between voltage and current over the operating range of the fuel cell is established. A variance value between the actual measured voltage and the expected voltage magnitude for a given actual measured current is calculated and compared with a predetermined allowable variance. An output is generated if the calculated variance value exceeds the predetermined variance. The predetermined voltage-current for the fuel cell is symbolized as a polarization curve at given operating conditions of the fuel cell.
    Type: Grant
    Filed: December 6, 2001
    Date of Patent: February 17, 2004
    Assignee: General Motors Corporation
    Inventors: Donald H. Keskula, Tien M. Doan, Bruce J. Clingerman
  • Patent number: 6689510
    Abstract: A multi-cell monoblock battery in which a plurality of electrochemical cells are disposed in a battery case. The battery case includes one or more cell partitions which divide the interior of the case into a plurality of cell compartments that house the electrochemical cells. Preferably, one or more coolant channels are integrally formed with at least one of the cell partitions. The coolant channels may have inlets and outlets disposed in the walls of the battery case so as to provide a cross-flow cooling design.
    Type: Grant
    Filed: September 26, 2000
    Date of Patent: February 10, 2004
    Assignee: Ovonic Battery Company, Inc.
    Inventors: Philippe Gow, Anthony Osgood, Dennis A. Corrigan, Lin R. Higley, Marshall D. Muller, Stanford R. Ovshinsky, Rajeev Puttaiah
  • Patent number: 6686082
    Abstract: A fuel cell stack comprises fuel cell basic units, each of which including a gas diffuser/collector plate serving as an anode, an ion exchange membrane, disposed on top of the gas diffuser/collector plate and an air diffuser/collector plate serving as a cathode and disposed on top of the ion exchange membrane. The gas diffuser/collector has a face directed to the ion exchange membrane. This face is provided with a flow field incorporating a multiplicity of adjacent open-faced flow channels. Each open-faced flow channel has a cross-section continuously diminishing from its inlet to its outlet. The flow field, viewed from the top, forms a trapezoidal contour.
    Type: Grant
    Filed: December 6, 2001
    Date of Patent: February 3, 2004
    Assignee: Powerdisc Development Corp. Ltd.
    Inventors: David Earl Leger, Shane Carver Black, Mark Chesley Mc Donald
  • Patent number: 6679926
    Abstract: A lithium secondary battery including an anode and cathode containing an active material capable of incorporating and releasing lithium ions, wherein the cathode is a porous sintered material made of a lithium-transition metal oxide, the porosity of the sintered material is 15 to 60%, and the electrical conductivity is not less than 0.1 mS/cm. Since the sintered material is sufficiently sintered so that the electrical conductivity may be more than 0.1 mS/cm, the bonding power of the primary particles of the sintered material is strong, and therefore the primary particles do not come off and the electrodes do not collapse even if the sintered material expands or shrinks because of the charge/discharge. Since the mechanical strength is great, the cathode can have a larger area. The electrolyte penetrates well into the sintered material because of its 15 to 60% porosity, and consequently the internal electrical resissitivity is low.
    Type: Grant
    Filed: February 12, 2001
    Date of Patent: January 20, 2004
    Assignee: Kao Corporation
    Inventors: Yoshio Kajiura, Atsushi Suzuki, Nobuyuki Isshiki
  • Patent number: 6680137
    Abstract: An integrated biomass gasification and fuel cell system wherein the electrochemical reaction in the fuel cell is effected by providing the reactant gases from a gasifier. Fuel gas from the gasifier is directed to the anode of the fuel cell and at least a portion of the exhaust gas from the anode is directed to the combustor. The portion of the exhaust gas from the anode is then combusted to recover residual energy to increase the overall efficiency of integrated biomass gasification and fuel cell system. Also, the oxidant gas from the combustor may be directed to the cathode of the fuel cell.
    Type: Grant
    Filed: April 15, 2002
    Date of Patent: January 20, 2004
    Assignee: Future Energy Resources Corporation
    Inventor: Mark A. Paisley
  • Patent number: 6680140
    Abstract: An industrial type vented cell storage battery includes an electrode package including at least one positive electrode containing nickel hydroxide, one negative electrode, and one hydrophilic and gas-permeable separator an extension of which beyond said electrode package is in contact with the electrolyte contained in said space. It also includes an oxygen recombination device. It contains an excess quantity of alkaline electrolyte. A space between the base of the electrode package and the bottom of the container contains at least some of the excess quantity of electrolyte.
    Type: Grant
    Filed: August 3, 1998
    Date of Patent: January 20, 2004
    Assignee: Alcatel
    Inventors: Thierry Berlureau, Jean-Louis Liska
  • Patent number: 6673482
    Abstract: A cooling system for a fuel cell includes a heat exchanger for cooling coolant discharged from the fuel cell and a heat regulator for adjusting a temperature of coolant to be supplied to the fuel cell after mixing coolant that has been cooled by the heat exchanger with coolant that has bypassed the heat exchanger together. The cooling system also includes an ion exchanger for removing ions from the coolant with the use of ion exchange resin, and a supply control means for controlling coolant to be supplied to the ion exchanger. The supply control means supplies the ion exchanger with coolant that has bypassed the heat exchanger when the heat regulator operates beyond a coolant temperature adjustable range, and the supply control means supplies the ion exchanger with coolant that has been cooled by the heat exchanger when the heat regulator operates within the coolant temperature adjustable range.
    Type: Grant
    Filed: September 27, 2001
    Date of Patent: January 6, 2004
    Assignee: Honda Giken Kogyo Kabushiki Kaisha
    Inventors: Mitsuharu Imazeki, Takeshi Ushio
  • Patent number: 6670063
    Abstract: In the fuel cell (FC) system comprising a FC and a rechargeable battery, a demand power of the FC is calculated by subtracting the charge power to the battery from a demand power signal which indicates the demand value of a load current and using the result. Accordingly, the charge current is never supplied to the battery which is charged to the maximum ratio, which prevents the utilization ratio of the fuel cell from decreasing and which prevents the battery from overcharge. On the other hand, the battery which is discharged to the minimum ratio does not output the discharge power but the charge power is supplied to the battery. Accordingly, it prevents the battery from over discharge.
    Type: Grant
    Filed: June 8, 2000
    Date of Patent: December 30, 2003
    Assignee: Honda Giken Kogyo Kabushiki Kaisha
    Inventors: Satoshi Aoyagi, Hiroyuki Abe, Hibiki Saeki, Yusuke Hasegawa
  • Patent number: 6670070
    Abstract: A conventional battery has a problem that a large short-circuit current was generated with temperature rise due to internal short-circuit or the like, and therefore, the temperature of the battery further increases due to exothermic reaction to increase the short-circuit current. The present invention has been carried out in order to solve the above problems. The battery of the present invention is a battery wherein at least one of a positive electrode 1 and a negative electrode 2 comprises an active material layer 6 containing an active material 8 and an electronically conductive material 9 contacted to the active material 8, wherein a solid electrolytic layer 3 is interposed between the above positive electrode 1 and the negative electrode 2, and wherein the above electronically conductive material 9 comprises an electrically conductive filler and a resin so that resistance increases with temperature rise.
    Type: Grant
    Filed: December 22, 2000
    Date of Patent: December 30, 2003
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventors: Shoji Yoshioka, Makiko Kise, Hiroaki Urushibata, Hisashi Shiota, Jun Aragane, Shigeru Aihara, Daigo Takemura, Takashi Nishimura