Patents Examined by Rakesh Dhingra
  • Patent number: 8662011
    Abstract: The present invention relates to an apparatus for carrying out plasma chemical vapor deposition, by which one or more layers of doped or undoped silica are deposited onto the interior of an elongated hollow glass substrate tube. The present invention further relates to a method of manufacturing an optical preform by means of plasma chemical vapor deposition, wherein doped or undoped glass-forming gases are passed through the interior of an elongated glass substrate tube while conditions for depositing glass layers are created in the interior of the substrate tube.
    Type: Grant
    Filed: May 1, 2008
    Date of Patent: March 4, 2014
    Assignee: Draka Comteq B.V.
    Inventors: Mattheus Jacobus Nicolaas Van Stralen, Igor Milicevic, Johannes Antoon Hartsuiker
  • Patent number: 8652297
    Abstract: A coaxial VHF power coupler includes conductive element inside a hollow cylindrical outer conductor of the power coupler and surrounding an axial section of a hollow cylindrical inner conductor of the power coupler. Respective plural motor drives contacting the hollow cylindrical outer conductor are connected to respective locations of the movable conductive element.
    Type: Grant
    Filed: March 17, 2011
    Date of Patent: February 18, 2014
    Assignee: Applied Materials, Inc.
    Inventors: Kenneth S. Collins, Zhigang Chen, Kartik Ramaswamy, James D. Carducci, Shahid Rauf, Andrew Nguyen
  • Patent number: 8635972
    Abstract: A plasma excitation device is described for use in depositing a film on a substrate from a plasma formed by distributed electron cyclotron resonance. The device comprises a microwave antenna having an end from which microwaves are emitted, a magnet disposed in the region of the said antenna end and defining therewith an electron cyclotron resonance region in which a plasma can be generated, and a gas entry element having an outlet for a film precursor gas or a plasma gas. The outlet is arranged to direct gas towards a film deposition area situated beyond the magnet, as considered from the microwave antenna.
    Type: Grant
    Filed: October 26, 2007
    Date of Patent: January 28, 2014
    Assignees: Ecole Polytechnique, Dow Corning Corporation
    Inventors: Pere Roca I Cabarrocas, Pavel Bulkin, Dmitri Daineka, Patrick Leempoel, Pierre Descamps, Thibault Kervyn De Meerendre
  • Patent number: 8623142
    Abstract: A coating apparatus includes a base, actuators, separating boards and a gas guide grill. The base includes a carrying surface for supporting a workpiece. The base defines recesses on the carrying surface. The actuators include shafts rotatably located in the recesses correspondingly, and motors for driving the shafts. The separating boards are located above the carrying surface and securely connected to the shafts. The separating boards define chambers therebetween. The separating boards are capable of being rotated toward the carrying surface by the shafts. The gas guide grill is located above the base. The gas guide grill defines gas guide holes corresponding to the chambers respectively.
    Type: Grant
    Filed: November 16, 2010
    Date of Patent: January 7, 2014
    Assignee: Hon Hai Precision Industry Co., Ltd.
    Inventor: Shao-Kai Pei
  • Patent number: 8617351
    Abstract: A plasma reactor for processing a workpiece, includes a vacuum chamber defined by a sidewall and ceiling, and a workpiece support pedestal having a workpiece support surface in the chamber and facing the ceiling and including a cathode electrode. An RF power generator is coupled to the cathode electrode. Plasma distribution is controlled by an external annular inner electromagnet in a first plane overlying the workpiece support surface, an external annular outer electromagnet in a second plane overlying the workpiece support surface and having a greater diameter than the inner electromagnet, and an external annular bottom electromagnet in a third plane underlying the workpiece support surface. D.C. current supplies are connected to respective ones of the inner, outer and bottom electromagnets.
    Type: Grant
    Filed: January 28, 2005
    Date of Patent: December 31, 2013
    Assignee: Applied Materials, Inc.
    Inventors: Daniel J. Hoffman, Roger A. Lindley, Michael C. Kutney, Martin J. Salinas, Hamid F. Tavassoli, Keiji Horioka, Douglas A. Buchberger, Jr.
  • Patent number: 8608901
    Abstract: In a substrate processing apparatus configured to perform a predetermined process on a target substrate accommodated in a process chamber, the process chamber is cleaned by alternately performing an operation of generating plasma of a gas containing oxygen within the process chamber, and an operation of generating plasma of a gas containing nitrogen within the process chamber.
    Type: Grant
    Filed: February 24, 2010
    Date of Patent: December 17, 2013
    Assignee: Tokyo Electron Limited
    Inventors: Shuuichi Ishizuka, Masaru Sasaki, Tetsuro Takahashi, Koji Maekawa
  • Patent number: 8603293
    Abstract: A plasma processing apparatus includes a processing container, an exhaust unit, an exhaust plate, an RF power application unit connected to a second electrode but not connected to the first electrode and configured to apply an RF power with a single frequency, the second electrode being connected to no power supply that applies an RF power other than the RF power with the single frequency, a DC power supply connected to the first electrode but not connected to the second electrode, the first electrode being connected to no power supply that applies an RF power, and a conductive member within the process container grounded to release through plasma a current caused by the DC voltage, the conductive member supported by the first shield part and laterally protruding therefrom only at a position that is located, in a height-wise direction, between a mount face and the exhaust plate and below a bottom of a focus ring.
    Type: Grant
    Filed: July 19, 2011
    Date of Patent: December 10, 2013
    Assignee: Tokyo Electron Limited
    Inventors: Akira Koshiishi, Masaru Sugimoto, Kunihiko Hinata, Noriyuki Kobayashi, Chishio Koshimizu, Ryuji Ohtani, Kazuo Kibi, Masashi Saito, Naoki Matsumoto, Yoshinobu Ohya, Manabu Iwata, Daisuke Yano, Yohei Yamazawa, Hidetoshi Hanaoka, Toshihiro Hayami, Hiroki Yamazaki, Manabu Sato
  • Patent number: 8597462
    Abstract: A movable symmetric chamber liner in a plasma reaction chamber, for protecting the plasma reaction chamber, enhancing the plasma density and uniformity, and reducing process gas consumption, comprising a cylindrical wall, a bottom wall with a plurality of openings, a raised inner rim with an embedded heater, heater contacts, and RF ground return contacts. The chamber liner is moved by actuators between an upper position at which substrates can be transferred into and out of the chamber, and a lower position at which substrate are processed in the chamber. The actuators also provide electrical connection to the heater and RF ground return contacts.
    Type: Grant
    Filed: May 21, 2010
    Date of Patent: December 3, 2013
    Assignee: Lam Research Corporation
    Inventors: Danny Brown, Leonard Sharpless
  • Patent number: 8590485
    Abstract: An ion source, capable of generating high-density wide ribbon ion beam, utilizing inductively coupled plasma production is disclosed. As opposed to conventional ICP sources, the present disclosure describes an ICP source which is not cylindrical. Rather, the source is defined such that its width, which is the dimension along which the beam is extracted, is greater than its height. The depth of the source may be defined to maximize energy transfer from the antenna to the plasma. In a further embodiment, a multicusp magnetic field surrounding the ICP source is used to further increase the current density and improve the uniformity of the extracted ion beam. Ion beam uniformity can also be controlled by means of several independent controls, including gas flow rate, and input RF power.
    Type: Grant
    Filed: April 26, 2010
    Date of Patent: November 26, 2013
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Costel Biloiu, Jay Scheuer, Joseph Olson, Frank Sinclair, Daniel Distaso
  • Patent number: 8578879
    Abstract: Embodiments of impedance matching networks are provided herein. In some embodiments, an impedance matching network may include a coaxial resonator having an inner and an outer conductor. A tuning capacitor may be provided for variably controlling a resonance frequency of the coaxial resonator. The tuning capacitor may be formed by a first tuning electrode and a second tuning electrode and an intervening dielectric, wherein the first tuning electrode is formed by a portion of the inner conductor. A load capacitor may be provided for variably coupling energy from the inner conductor to a load. The load capacitor may be formed by the inner conductor, an adjustable load electrode, and an intervening dielectric.
    Type: Grant
    Filed: July 29, 2009
    Date of Patent: November 12, 2013
    Assignee: Applied Materials, Inc.
    Inventors: Kartik Ramaswamy, Hiroji Hanawa, Kenneth S. Collins, Lawrence Wong, Samer Banna, Andrew Nguyen
  • Patent number: 8573151
    Abstract: A conventional microwave plasma processing apparatus, even when krypton (Kr) is used as a plasma-generation gas, can only obtain an oxide film or a nitride film having the same level of characteristics as those obtained when a rare gas such as argon (Ar) is used as a plasma-generation gas. Accordingly, instead of forming a dielectric window of a microwave plasma processing apparatus with only a ceramic member, a planarization film capable of obtaining a stoichiometric SiO2 composition by thermal treatment is coated on one of a plurality of surfaces of the ceramic member, the surface facing a process space, and then thermally-treated, thereby forming a planarization insulation film having a very flat and dense surface. A corrosion-resistant film is formed on the planarization insulation film.
    Type: Grant
    Filed: February 26, 2009
    Date of Patent: November 5, 2013
    Assignees: Tokyo Electron Limited, Tohoku University
    Inventors: Tadahiro Ohmi, Masaki Hirayama, Tetsuya Goto, Yasuyuki Shirai, Masafumi Kitano, Kohei Watanuki, Takaaki Matsuoka, Shigemi Murakawa
  • Patent number: 8568556
    Abstract: The plasma processing apparatus includes: a processing container including a metal; an electromagnetic wave source outputting an electromagnetic wave; a dielectric plate facing an inner wall of the processing container and transmitting the electromagnetic wave, which is output from the electromagnetic wave source, into the processing container; and a groove formed in an inner surface of the processing container and functioning as a propagation disturbing portion. If a low frequency microwave is supplied, the propagation of a conductor surface wave can be suppressed by the groove.
    Type: Grant
    Filed: June 11, 2008
    Date of Patent: October 29, 2013
    Assignees: Tokyo Electron Limited, Tohoku University
    Inventors: Masaki Hirayama, Tadahiro Ohmi
  • Patent number: 8562744
    Abstract: A coating device includes two workspaces, two first slide rails, two second slide rails, two transporting loops, a number of rotating platforms, and a number of loading poles. The first slide rails are respectively fixed on the bottoms of the workspaces. The second slide rails are respectively fixed on the tops of the workspaces. The transporting loops are movably positioned on the first slide rails respectively. The rotating platforms are rotatably positioned on the transporting loops and capable of being driven by the transporting loops to rotate and slide along the first slide rails. The loading poles are positioned between the rotating platforms and the second slide rails, and are used for holding substrates. The loading poles are capable of being transported from one workspace to another workspace.
    Type: Grant
    Filed: December 13, 2010
    Date of Patent: October 22, 2013
    Assignee: Hon Hai Precision Industry Co., Ltd.
    Inventor: Chia-Ying Wu
  • Patent number: 8562743
    Abstract: A high pressure processing system including a chamber configured to house a substrate. A fluid introduction system includes at least one composition supply system configured to supply a first composition and a second composition, and at least one fluid supply system configured to supply a fluid. The fluid supply system is configured to alternately and discontinuously introduce the first composition and the second composition to the chamber within the fluid.
    Type: Grant
    Filed: May 2, 2011
    Date of Patent: October 22, 2013
    Assignee: Tokyo Electron Limited
    Inventor: Eric J. Strang
  • Patent number: 8551289
    Abstract: A plasma processing apparatus, for performing a plasma processing on a target substrate by generating an inductively coupled plasma of a processing gas in a depressurized processing chamber, includes: a mounting table; a gas supply unit; a gas exhaust unit; a planar high frequency antenna disposed opposite to the mounting table with a plate-shaped dielectric member therebetween and a shield member covering the high frequency antenna. The high frequency antenna includes an inner antenna element provided at a central portion of a region above the plate-shaped dielectric member and an outer antenna element provided at an edge portion to surround a periphery of the inner antenna element. Further, two ends of each of the antenna elements are open ends and the antenna elements are grounded at central points thereof or points close thereto to resonate at ½ wavelengths of high frequencies from individual high frequency power supplies.
    Type: Grant
    Filed: April 28, 2010
    Date of Patent: October 8, 2013
    Assignees: Tokyo Electron Limited, Meiko Co., Ltd.
    Inventors: Eiichi Nishimura, Shimao Yoneyama
  • Patent number: 8545669
    Abstract: A plasma processing system is provided with diagnostic apparatus for making in-situ measurements of plasma properties. The diagnostic apparatus generally comprises a non-invasive sensor array disposed within a plasma processing chamber, an electrical circuit for stimulating the sensors, and means for recording and communicating sensor measurements for monitoring or control of the plasma process. In one form, the sensors are dynamically pulsed dual floating Langmuir probes that measure incident charged particle currents and electron temperatures in proximity to the plasma boundary or boundaries within the processing system. The plasma measurements may be used to monitor the condition of the processing plasma or furnished to a process system controller for use in controlling the plasma process.
    Type: Grant
    Filed: February 25, 2005
    Date of Patent: October 1, 2013
    Assignee: KLA-Tencor Corporation
    Inventors: Leonard J. Mahoney, Carl W. Almgren, Gregory A. Roche, William W. Saylor, William D. Sproul, Hendrik V. Walde
  • Patent number: 8540843
    Abstract: A plasma processing system for processing a substrate is described. The plasma processing system includes a bottom piece including a chuck configured for holding the substrate. The plasma processing system also includes an induction coil configured to generate an electromagnetic field in order to create a plasma for processing the substrate. The plasma processing system also includes a cover covering at least the induction coil and a heating and cooling system.
    Type: Grant
    Filed: August 23, 2010
    Date of Patent: September 24, 2013
    Assignee: Lam Research Corporation
    Inventors: Leonard J. Sharpless, Keith Comendant
  • Patent number: 8529728
    Abstract: A system for forming a feature includes forming a mask of a first material on an underlying layer, the mask having an incorrect profile. The profile of the mask is corrected and a feature is formed in the underlying layer. A method of forming a feature is also disclosed.
    Type: Grant
    Filed: August 14, 2008
    Date of Patent: September 10, 2013
    Assignee: Lam Research Corporation
    Inventor: Robert Charatan
  • Patent number: 8524101
    Abstract: The present invention provides a method for manufacturing a semiconductor device. In the method, a connection hole such as a via hole is formed in an interlayer insulating film by plasma etching with high etching uniformity regardless of the array density of connection holes. In the method, an upper layer film having a mask pattern is formed on the interlayer insulating film present on a substrate. A gas required for dehydration is then supplied to the substrate under the condition that an upper surface of the interlayer insulating film is exposed in order to remove moisture from the interlayer insulating film. A portion of the interlayer insulating film is etched to form a connection hole in which an electrical connection portion is to be embedded.
    Type: Grant
    Filed: June 9, 2008
    Date of Patent: September 3, 2013
    Assignee: Tokyo Electron Limited
    Inventors: Yuki Chiba, Shigeru Tahara
  • Patent number: 8496781
    Abstract: The invention provides a plasma processing apparatus which is based upon a dry etching apparatus and which can inhibit the contamination of a work piece caused by sputtering onto a wall of a vacuum chamber, the occurrence of a foreign matter, the increase of a running cost for replacing the walls of the vacuum chamber and the deterioration of a rate of operation.
    Type: Grant
    Filed: July 18, 2005
    Date of Patent: July 30, 2013
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Kenetsu Yokogawa, Kenji Maeda, Masaru Izawa