Patents Examined by Robert Eom
  • Patent number: 9822151
    Abstract: This disclosure relates to graphene derivatives, as well as related devices including graphene derivatives and methods of using graphene derivatives.
    Type: Grant
    Filed: May 16, 2016
    Date of Patent: November 21, 2017
    Assignee: Research Foundation of The City University of New York
    Inventors: Michele Vittadello, Kamil Woronowicz, Manish Chhowalla, Paul G. Falkowski, John W. Harrold, Jr.
  • Patent number: 9797893
    Abstract: A device for detecting at least one analyte in a liquid sample generally comprises (i) a support having a chamber for receiving a biological fluid (e.g., milk) therein, wherein said chamber is an elongate chamber having a length axis; (ii) a (stationary or movable) carrier (in some embodiments in the form of an end cap, or connected to an end cap; in other embodiments in the form of an agitator in said elongate chamber).
    Type: Grant
    Filed: May 9, 2014
    Date of Patent: October 24, 2017
    Assignee: Advanced Animal Diagnostics, Inc.
    Inventors: Reha O. Azizoglu, Stefano Bresolin, David A. Calderwood, Robert L. Cheek, Joy Parr Drach, John Groelke, Tobias M. Heineck, Mitchell Hockett, David Newcomb, Duane Olsen, Chris Paul, Jasper N. Pollard, Rodolfo R. Rodriguez, Demetris Young
  • Patent number: 9753027
    Abstract: The present disclosure relates to a cantilever sensor, and a biosensor having the same, wherein the cantilever sensor including a slit formed on a flat board and a cantilever formed by the slit, a first electrode formed on the cantilever, and a second electrode formed on the flat board countered to the first electrode about the slit, wherein the electrodes are formed on the cantilever sensor having the slit, whereby sensing can be conducted by an electric method, through which the sensor can be effectively miniaturized.
    Type: Grant
    Filed: December 18, 2014
    Date of Patent: September 5, 2017
    Assignee: Korea Institute of Science and Technology
    Inventors: Kyoseon Hwang, Tae Song Kim, Rhokyun Kwak, Won Woo Cho, Myung Sic Chae
  • Patent number: 9714886
    Abstract: When injecting a sample into carrier-liquid channels (3A and 3B), injection shock is prevented. Septa 13 and 14 constitute the upper wall and the lower wall of a sample injection part (11) of the carrier-liquid channels (3A and 3B). A needle (27) can vertically penetrate the septum (13) on the upper wall side and also penetrate the septum (14) on the lower wall side. A needle moving unit (28) induces the needle (27) to penetrate the septum (14) on the lower wall side and induces the tip of the needle to face the inside of a sample vessel (26). A measurement pump (29) is operated for drawing and as a result a sample is drawn into the needle (27). Next, the needle (27) is extracted from the septum (14) on the lower wall side, the tip of the needle is induced to face the inside of the sample injection part (11), the measurement pump (29) is caused to discharge and as a result the sample within the needle (27) is injected.
    Type: Grant
    Filed: November 9, 2012
    Date of Patent: July 25, 2017
    Assignee: Sekisui Medical Co., Ltd.
    Inventors: Takayuki Oka, Takuya Yotani, Hideki Muraki
  • Patent number: 9715998
    Abstract: The invention discloses a method for monitoring level of paraben comprising: dissolving a sample in a solvent and obtaining a supernatant containing paraben by ultrasonic vibration and high speed centrifugation; performing a derivatization reaction between a derivatization reagent and paraben by adding the derivatization reagent into the supernatant to obtain a derivatization solution containing a tagged paraben; extracting the derivatization solution by an extractant to obtain an extract containing the tagged paraben; and ionizating the tagged paraben by a laser beam and analyzing mass-to-charge ratio of the tagged paraben by an analyzer to determine molecular weight thereof.
    Type: Grant
    Filed: January 9, 2014
    Date of Patent: July 25, 2017
    Assignee: Kaohsuing Medical University
    Inventors: Chi-Yu Lu, Yi-Hsuan Lee
  • Patent number: 9711666
    Abstract: A sensor capable of detecting light, hydrogen gas, and air pressure includes a metal oxide film produced by a process including the steps of: (a) forming an organic film by using a primer composition containing (i) an addition polymerizable compound including three or more reactive groups, (ii) an addition polymerizable compound including an acid group, and (iii) an addition polymerizable compound including a hydrophilic functional group; (b) forming a metal (M1) salt from the acid group; (c) substituting the metal (M1) salt of the acid group with a metal (M2) salt by treating the organic film with a metal (M2) ion aqueous solution; (d) reducing the metal (M2) ion so that a metal film is formed on a surface of the organic film; and (e) oxidizing the metal film.
    Type: Grant
    Filed: March 18, 2011
    Date of Patent: July 18, 2017
    Assignee: OMRON Corporation
    Inventors: Keisuke Ohmae, Tetsuya Mori, Tetsuo Hayase, Seiji Nakajima, Mariko Nishiguchi
  • Patent number: 9696261
    Abstract: A multi-channel device includes up to three channels for optical testing of liquid samples. The liquid sample(s) may include surface water, drinking water, processed water or the like. The multi-channel device may include a turbidity channel and a color channel that measure turbidity and color, respectively, of a liquid sample using spectrographic analysis. The multi-channel device may also include a colorimetric channel that measures the concentration of various analytes in a liquid sample, such as free chlorine, total chlorine, copper and phosphate.
    Type: Grant
    Filed: October 8, 2008
    Date of Patent: July 4, 2017
    Assignee: Ecolab USA Inc.
    Inventors: Eugene Tokhtuev, Christopher J. Owen, Viktor Slobodyan, William M. Christensen, Paul Schilling, Joseph Phillip Erickson
  • Patent number: 9664664
    Abstract: A method for detecting metal ions and chemical/biochemical molecules is provided. The method includes providing a probe, wherein the probe includes: a gold nanocluster; a reducing agent and a chelating agent partially capped on a surface of the gold nanocluster, wherein the probe is formed of reducing gold ions by the reducing agent, and the gold ions and the reducing agent have a molar ratio of 1:0.7 to 1:1.9. The probe may interact with several metal ions of an aqueous solution to produce different changes of fluorescent spectra. Chemical/biochemical molecules can be detected by the fluorescent spectra difference caused by the interaction between the metal ions and the chemical/biochemical molecules.
    Type: Grant
    Filed: December 24, 2014
    Date of Patent: May 30, 2017
    Assignee: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Cheng-Tai Chen, Pei-Shin Jiang
  • Patent number: 9664674
    Abstract: A processing and detection system for detecting presence of at least one gluten protein in a food sample comprises a food processor including: a reservoir containing a process liquid for processing the food sample; a body that comprises a chamber configured to receive the food sample; and a pressing surface configured to press on the reservoir to cause the process liquid to exit the reservoir and mix with the food sample, thereby generating a processed food liquid; and an exit port configured to conduct the processed food liquid out of the food processor; and a cartridge including: at least one sensor configured to receive the processed food liquid and to generate an electrical signal in response to interaction with the at least one gluten protein in the processed food liquid, and an analyzer in electrical communication with the at least one sensor for detecting the electrical signal and determining the presence of the at least one gluten protein in the food sample based on the detected electrical signal.
    Type: Grant
    Filed: October 2, 2015
    Date of Patent: May 30, 2017
    Assignee: Rite Taste, LLC
    Inventors: Mohammad E. Taslim, Mohammed Fotouhi, Mehdi Abedi, Reza Mollaaghababa, Bahram Fotouhi, Kashayar Javaherian, Edward Alvin Greenfield
  • Patent number: 9664670
    Abstract: The invention is in the field of in vitro diagnostics and relates to a method for ascertaining a transmission value for a light signal that is pulsed at a frequency through a specimen in an automatic analysis appliance. It also relates to a transmission measurement apparatus for an automatic analysis appliance, comprising a light source that is pulsed at a frequency and a photodetector having a downstream A/D converter.
    Type: Grant
    Filed: November 25, 2013
    Date of Patent: May 30, 2017
    Assignee: SIEMENS HEALTHCARE DIAGNOSTICS PRODUCTS GMBH
    Inventor: Wolfgang Steinebach
  • Patent number: 9664633
    Abstract: A resistive hydrogen sensor has at least two electrical connections and at least one resistance layer containing at least one suitable material for incorporating hydrogen, via which the electrical connections are connected to each other. The resistance layer adjoins at least one interface on a contact layer, which contains at least one chemical element from the fourth subgroup of the periodic table and/or carbon. The contact layer connected in series between the electrical connections to the resistance layer.
    Type: Grant
    Filed: January 27, 2009
    Date of Patent: May 30, 2017
    Assignee: Micronas GmbH
    Inventors: Gilbert Erdler, Holger Reinecke, Claas Müller, Mirko Frank
  • Patent number: 9664641
    Abstract: Embodiments described herein provide for a pH sensor that is configured for use over a pressure and temperature range. The ISFET die of the pH sensor is bonded to the substrate of the pH sensor with a bonding layer that is disposed between the substrate and the ISFET die. The pressure and temperature change across the pressure and temperature range generates an environmental force in the pH sensor. Further, the substrate or the bonding layer or both change volume over the pressure and temperature range, and the substrate or the bonding layer or both are configured such that the volume change induces a counteracting force that opposes at least a portion of the environmental force. The counteracting force is configured to maintain the change in piezoresistance of the ISFET die from the drain to the source to less than 0.5% over the pressure and temperature range.
    Type: Grant
    Filed: July 29, 2013
    Date of Patent: May 30, 2017
    Assignee: Honeywell International Inc.
    Inventors: Donald Horkheimer, Paul S. Fechner, David S. Willits
  • Patent number: 9579649
    Abstract: Embodiments of fluid distribution manifolds, cartridges, and microfluidic systems are described herein. Fluid distribution manifolds may include an insert member and a manifold base and may define a substantially closed channel within the manifold when the insert member is press-fit into the base. Cartridges described herein may allow for simultaneous electrical and fluidic interconnection with an electrical multiplex board and may be held in place using magnetic attraction.
    Type: Grant
    Filed: October 7, 2010
    Date of Patent: February 28, 2017
    Assignee: Sandia Corporation
    Inventors: Ronald F. Renzi, Gregory J. Sommer, Anup K. Singh, Anson V. Hatch, Mark R. Claudnic, Ying-Chih Wang, James L. Van de Vreugde
  • Patent number: 9548184
    Abstract: A microreactor for use in a microscope, comprising a first and second cove layer (13), which cover layers are both at least partly transparent to an electron beam (14) of an electron microscope, and extend next to each other at a mutual distance from each other and between which a chamber (15) is enclosed, wherein an inlet (4) and an outlet (5) are provided for feeding fluid through the chamber and wherein heating means (8) are provided for heating the chamber and/or elements present therein.
    Type: Grant
    Filed: September 12, 2005
    Date of Patent: January 17, 2017
    Assignees: Technische Universiteit Delft, Stichting voor de Technische Wetenschappen
    Inventors: Jan Fredrik Creemer, Hendrik Willem Zandbergen, Pasqualina Maria Sarro
  • Patent number: 9534078
    Abstract: A method for measuring the thermal stability of succinic acid includes the following steps: 1) preparing a succinic acid crystal powder having less than 1% residual water content; 2) placing 10 g of the crystal powder in an oven at 220° C. for 2 hours; 3) pulverizing and sieving the crystal powder processed in this way, such that the particle size distribution thereof is between 0 and 10%, and preferably between 4 and 6% for particles larger than 500 ?m in size, between 20 and 40%, and preferably between 25 and 35% for particles between 200 and 500 ?m in size, between 50 and 75% and preferably between 55 and 70% for particles smaller than 200 ?m in size; and 4) measuring the color, in a spectrocolorimeter, of the pulverized and sieved powder and determining the average value of the yellow (index “b”).
    Type: Grant
    Filed: March 1, 2013
    Date of Patent: January 3, 2017
    Assignee: ROQUETTE FRERES
    Inventors: Guillaume Fiey, Marilyne Guillemant, Jean-Michel Roturier, Nicolas Jacquel
  • Patent number: 9518969
    Abstract: In order to completely decompose remaining urea contained in exhaust gas emitted from an internal combustion engine to make it possible to accurately measure an amount of the remaining urea, as well as preventing measurement accuracy and reliability from being damaged by some cause such as the attachment of powdery urea on a sensor, a gas analysis apparatus is provided with a filter part that is provided between a sampling port and a produced substance measuring mechanism in a mixed gas sampling pipe to collect urea in a solid state or in a state of being dissolved in water in mixed gas.
    Type: Grant
    Filed: September 3, 2012
    Date of Patent: December 13, 2016
    Assignee: Horiba, Ltd.
    Inventor: Shigeru Nakatani
  • Patent number: 9513224
    Abstract: Methods, devices, systems, and apparatuses are provided for the image analysis of measurement of biological samples.
    Type: Grant
    Filed: January 22, 2014
    Date of Patent: December 6, 2016
    Assignee: Theranos, Inc.
    Inventors: Karan Mohan, Chinmay Pangarkar, James Wasson
  • Patent number: 9492826
    Abstract: The invention relates to methods and devices for control of an integrated thin-film device with a plurality of microfluidic channels. In one embodiment, the microfluidic device includes a microfluidic chip comprising a first zone having a plurality of microfluidic channels and a second zone having a plurality of microfluidic channels, wherein the microfluidic channels in the first and second zones are in fluid communication. The microfluidic device further comprising a thin-film heater in thermal communication with each of the microfluidic channels in the first and second zones. The microfluidic device also includes a control system configured to independently control the temperature of each of the thin-film heaters using pulse width modulation (PWM) control signals that are optimized for each of the thin-film heaters.
    Type: Grant
    Filed: June 30, 2008
    Date of Patent: November 15, 2016
    Assignee: Canon U.S. Life Sciences, Inc.
    Inventors: Takayoshi Hanagata, Hiroshi Inoue, Gregory A. Dale, Kenton C. Hasson
  • Patent number: 9470650
    Abstract: Sensors for sensing/measuring one or more analytes in a chemical environment. Each sensor is based on a semiconductor structure having an interfacial region containing a two-dimensional electron gas (2DEG). A catalyst reactive to the analyte(s) is in contact with the semiconductor structure. Particles stripped from the analyte(s) by the catalyst passivate the surface of the semiconductor structure at the interface between the catalyst and the structure, thereby causing the charge density in the 2DEG proximate the catalyst to change. When this basic structure is incorporated into an electronic device, such as a high-electron-mobility transistor (HEMT) or a Schottky diode, the change in charge density manifests into a change in an electrical response of the device. For example, in an HEMT, the change in charge density manifests as a change in current through the transistor, and, in a Schottky diode, the change in charge density manifests as a change in capacitance.
    Type: Grant
    Filed: October 20, 2011
    Date of Patent: October 18, 2016
    Assignee: Carnegie Mellon University
    Inventors: Jason Gu, Jacob H. Melby, Robert F. Davis
  • Patent number: 9469886
    Abstract: Hydrogen sensor including a substrate on which there is deposited an active layer of material comprising a first element selected from the rare earth family, a second element selected from the platinum group metals and a third element selected from the alkaline earth metal family.
    Type: Grant
    Filed: June 6, 2012
    Date of Patent: October 18, 2016
    Assignee: The Swatch Group Research and Development Ltd
    Inventors: Klaus Yvon, Edmond Koller, Jean-Philippe Rapin, Michael Stalder