Patents Examined by Robert J. Hill, Jr.
  • Patent number: 8263410
    Abstract: Disclosed is an innovative method for detecting metal ions based on selective plasmonic resonance energy transfer between metal-ligand complexes and a single nanoplasmonic particle as a probe. The selective plasmonic resonance energy transfer occurs if a resonance frequency matching condition between the single nanoplasmonic particle and the metal-ligand complexes is satisfied.
    Type: Grant
    Filed: July 30, 2009
    Date of Patent: September 11, 2012
    Assignees: Industry-University Cooperation Foundation Sogang University, University of California, Berkeley
    Inventors: Taewook Kang, Luke P. Lee, Yeonho Choi, Younggeun Park
  • Patent number: 8262760
    Abstract: A device and process for separating liquid and gas phases in a flowstream containing a liquefied gas or supercritical fluid under pressure mixed with a liquid. A splitter vessel separates the liquid from gas phases and transfers liquid to a collection container while conducting the gas phase out of the splitter. Separation of liquid phase out of the flowstream is provided without additional pressure schemes or solvent extractions imposed on the stream.
    Type: Grant
    Filed: January 19, 2011
    Date of Patent: September 11, 2012
    Assignee: Waters Technologies Corp.
    Inventors: Kimber D. Fogelman, Vincent Worley, Peter Sullivan
  • Patent number: 8252098
    Abstract: A device for filtering nanoparticulate matter below 300 nm in size from ambient air within a defined enclosed space comprises at least one filter medium containing at least one filter material, and a fan or blower, which blows or draws the air through the filter medium does so with sufficiently low air velocity in the filter medium that the air has a long residence time in the filter medium, during which time adhesive encounters between nanoparticulate matter and the solid phase of the filter material are highly probable. This air velocity is also being sufficiently low to ensure that, once adhesion has taken place, kinetic de-adhesion by the air flow is highly improbable. Such a device allows to keep the nanoparticle count inside the enclosed space kept below 5000/cc, equivalent to ‘natural woodland’, even though external levels may exceeded 200,000/cc: the removal of nanoparticles by cleaning making this <2.5% the external count.
    Type: Grant
    Filed: August 13, 2007
    Date of Patent: August 28, 2012
    Assignee: Matter Aerosol AG
    Inventors: Andreas Mayer, Heinz Burtscher, Jan Czerwinski, Markus Kasper, Richard John Artley, Günther Dobrauz, Gordon Edge
  • Patent number: 8252089
    Abstract: The present invention relates to a method and device for compressing and drying a gas flow rich in carbon dioxide, for example containing more than 50 mol % of carbon dioxide.
    Type: Grant
    Filed: November 21, 2008
    Date of Patent: August 28, 2012
    Assignee: L'Air Liquide Societe Anonyme pour l'Etude et l'Exploitation des Procedes Georges Claude
    Inventors: Jean-Pierre Tranier, Arthur Darde, Jean-François Rauch, Dominique Antonio, Christophe Michel
  • Patent number: 8246016
    Abstract: A downcomer for a gas-liquid contacting device. The downcomer may include first and second spaced apart side walls, first and second end walls, a floor, and first and second opposing discharge walls. Generally, each end wall is coupled to a respective end of the first and second side walls. Typically, the floor is coupled to the side walls and end walls, and the floor has at least one section adapted for permitting the passage of liquid there-through. The first and second opposing discharge walls can be coupled to respective first and second side walls and having respective ends below the floor.
    Type: Grant
    Filed: July 18, 2008
    Date of Patent: August 21, 2012
    Assignee: UOP LLC
    Inventor: Zhanping Xu
  • Patent number: 8246730
    Abstract: The assemblies of the invention can comprise a fine fiber layer having dispersed within the fine fiber layer an active particulate material. Fluid that flows through the assemblies of the invention can have any material dispersed or dissolved in the fluid react with, be absorbed by, or adsorbed onto, the active particulate within the nanofiber layer. The structures of the invention can act simply as reactive, absorptive, or adsorptive layers with no filtration properties, or the structures of the invention can be assembled into filters that can filter particulate from a mobile fluid while simultaneously reacting, absorbing, or adsorbing materials from the mobile fluid.
    Type: Grant
    Filed: June 30, 2011
    Date of Patent: August 21, 2012
    Assignee: Donaldson Company, Inc.
    Inventors: Andrew J. Dallas, William Lefei Ding, Jon D. Joriman, Dustin Zastera, James R. Giertz, Veli Kalayci, Hoo Y. Chung
  • Patent number: 8247632
    Abstract: A method of producing a hydrocarbon product by hydrotreating a feedstock comprising triacylglyceride (TAG) and TAG-derived materials such as free fatty acid (FFA) and fatty acid methyl ester (FAME) in the presence of a nonsulfided hydrotreating catalyst to produce a first product comprising hydrocarbons. A method of producing a transportation fuel by selecting an undoped feedstock comprising virgin TAG, used TAG, FFA, and FAME or a combination thereof; hydrotreating the undoped feedstock in the presence of an unsulfided hydrotreating catalyst to produce a first product and subjecting the first product to at least one process selected from aromatization, cyclization, and isomerization to produce a second hydrocarbon product selected from gasoline, kerosene, jet fuel, and diesel fuels. A method is described by which fatty acids may be converted to hydrocarbons suitable for use as liquid transportation fuels.
    Type: Grant
    Filed: June 27, 2009
    Date of Patent: August 21, 2012
    Assignee: Energy & Environmental Research Center Foundation
    Inventors: Joshua R. Strege, Benjamin G. Oster, Paul D. Pansegrau, Chad A. Wocken, Ted R. Aulich, Marc Kurz
  • Patent number: 8246017
    Abstract: A downcomer for a gas-liquid contacting device. The downcomer may include first and second spaced apart side walls, first and second end walls, a floor, and first and second opposing discharge walls. Generally, each end wall is coupled to a respective end of the first and second side walls. Typically, the floor is coupled to the side walls and end walls, and the floor has at least one section adapted for permitting the passage of liquid there-through. The first and second opposing discharge walls can be coupled to respective first and second side walls and having respective ends below the floor.
    Type: Grant
    Filed: August 10, 2011
    Date of Patent: August 21, 2012
    Assignee: UOP LLC
    Inventor: Zhanping Xu
  • Patent number: 8236169
    Abstract: A process for hydroprocessing heavy oil feedstock is disclosed. The process operates in once-through mode, employing a plurality of contacting zones and at least a separation zone to convert at least a portion of the heavy oil feedstock to lower boiling hydrocarbons, forming upgraded products. The contacting zones operate under hydrocracking conditions, employing a slurry catalyst for upgrading the heavy oil feedstock. At least an additive material selected from inhibitor additives, anti-foam agents, stabilizers, metal scavengers, metal contaminant removers, metal passivators, and sacrificial materials, in an amount of less than 1 wt. % of the heavy oil feedstock, is added to at least one of the contacting zones. In one embodiment, the additive material is an anti-foam agent. In another embodiment, the additive material is a sacrificial material for trapping heavy metals in the heavy oil feed and/or deposited coke, thus prolonging the life of the slurry catalyst.
    Type: Grant
    Filed: July 21, 2009
    Date of Patent: August 7, 2012
    Assignee: Chevron U.S.A. Inc
    Inventors: Joseph V Nguyen, Axel Brait, Julie Chabot, Bo Kou, Erin Maris, Rahul S. Bhaduri, Alexander E. Kuperman
  • Patent number: 8236095
    Abstract: A vacuum-pressure swing absorption concentrator includes a motor driven compressor having pressure and vacuum heads that are connected to a pressure reservoir and a vacuum reservoir respectively. The pressure and vacuum reservoirs are selectively and alternately interconnected in sequence through a main valve to a pair of nitrogen filtering sieve beds. A controller operates the valve to alternately and cyclically interconnect the sieve beds to the pressure and vacuum reservoirs respectively. During each cycle, a respective bed is pressurized and enriched oxygen is produced and delivered to a tank for use by a patient. At the same time, the other bed is evacuated through the vacuum reservoir. A crossover valve delivers oxygen from a pressurized bed to an evacuated bed to facilitate purging of impurities previously collected in the evacuated bed.
    Type: Grant
    Filed: October 19, 2009
    Date of Patent: August 7, 2012
    Assignee: O2 Concepts, LLC
    Inventor: Stuart Bassine
  • Patent number: 8236172
    Abstract: A process for reducing the sulfur content of a hydrocarbon stream, including: feeding hydrogen and a hydrocarbon stream including sulfur compounds to a catalytic distillation reactor having one or more hydrodesulfurization reaction zones; concurrently in the catalytic distillation reactor: fractionating the hydrocarbon stream into a heavy fraction and a light fraction; contacting hydrogen and the light fraction to form H2S and a light fraction of reduced sulfur content; recovering the light fraction, H2S, and hydrogen as an overheads; recovering the heavy fraction; heating the overheads to a temperature from 500 to 700° F.; feeding the heated overheads and hydrogen to a high temperature low pressure reactor to form H2S and a reactor effluent of reduced mercaptan content; separating the reactor effluent, H2S, and unreacted hydrogen to form a light hydrocarbon fraction and a fraction including H2S and hydrogen; recycling a portion of the light hydrocarbon fraction to the catalytic distillation reactor.
    Type: Grant
    Filed: September 20, 2011
    Date of Patent: August 7, 2012
    Assignee: Catalytic Distillation Technologies
    Inventors: Gary G. Podrebarac, Raymond Chafin
  • Patent number: 8231776
    Abstract: A method for obtaining a petroleum distillate product is provided, the method includes subjecting an untreated light Fischer-Tropsch liquid to a two-step hydrogenation process, each step to be carried in the presence of a catalyst comprising an amorphous substrate having a metallic composition embedded therein. After the first step of hydrogenation, an intermediate hydrotreated light Fischer-Tropsch liquid is obtained, followed by the second step of hydrogenation thereof, obtaining the petroleum distillate product as a result. An apparatus for carrying out the method is also provided.
    Type: Grant
    Filed: March 24, 2010
    Date of Patent: July 31, 2012
    Assignee: UOP LLC
    Inventor: Peter Kokayeff
  • Patent number: 8227254
    Abstract: The present invention pertains to compounds and polymers which incorporate a boronic acid sensor group (SG) of the formula (I): wherein: J is independently —CH2— or —CH2CH2—; n is independently 0, 1, 2, or 3; and each RR, if present, is independently a ring substituent; and wherein the ring attachment (i.e., where sensor group is attached) is via the 3-, 4-, 5-, or 6-ring position. Such compounds and polymers are useful in the selective chemical detection and/or quantitation of alpha-hydroxy carboxylic acids, such as lactic acid/lactate and malic acid/malate. The present invention also pertains to methods of preparing such compounds and polymers; methods and assays which employ these compounds and polymers; devices (e.g., holographic sensors) and kits for use in such methods and assays, etc.
    Type: Grant
    Filed: January 31, 2006
    Date of Patent: July 24, 2012
    Assignee: Cambridge Enterprise Limited
    Inventors: Christopher Robin Lowe, Felicity Kate Sartain, Xiaoping Yang
  • Patent number: 8226752
    Abstract: An air purification device that is decorative and effective in removing contaminants from indoor air. The air purification device includes a carbon matrix composite.
    Type: Grant
    Filed: April 29, 2010
    Date of Patent: July 24, 2012
    Inventors: Hai Xu, Tao Li
  • Patent number: 8227259
    Abstract: Methods, systems and kits for the simultaneous or sequential analysis of one or more hormones by mass spectrometry are disclosed. The methods require minimal sample size and minimal preparation time. The methods comprise ionizing the hormones and analyzing the hormones by mass spectrometry. In addition, methods, systems and kits for the simultaneous or sequential analysis of free thyroxine (FT4) hormone and free-triiodothyronine (FT3) is disclosed comprising ionization of the FT4 and FT3 hormone in the negative mode using an electrospray source.
    Type: Grant
    Filed: October 20, 2005
    Date of Patent: July 24, 2012
    Assignee: Georgetown University
    Inventor: Steven J. Soldin
  • Patent number: 8226747
    Abstract: An object of the present invention is to provide an adsorbent suitable as an adsorbent for a canister which is capable of reducing an amount of evaporated fuel gas released into the atmosphere even where a motor vehicle is allowed to park for a prolonged period of time, a process for producing the adsorbent as well as a canister using the adsorbent and a method for using the canister. The above object can be accomplished by an adsorbent in which an integrated volume of pores having an average diameter of 3,000 to 100,000 nm as measured with a mercury porosimeter is 6.5 mL/dl or more and an equilibrium adsorption as measured in an n-butane volume concentration of 2,000 ppm is 0.16 g/dL or more, a process for producing the adsorbent, as well as a canister and a method for using the canister.
    Type: Grant
    Filed: August 29, 2008
    Date of Patent: July 24, 2012
    Assignee: Kuraray Chemical Co., Ltd.
    Inventors: Tetsuya Hanamoto, Susumu Abe, Kenichi Ishikawa
  • Patent number: 8226868
    Abstract: A device for preparing a flat profiled element from an elastomeric thermoplastic gel includes: an extruder with at least one feed and a discharge; an extruder die having section configured to be suitable for a profile of the flat profiled element; a liquid cooling bath with a free surface for receiving and cooling the flat profiled element as the flat profiled element is discharged from the extruder die; and a flat moving support for receiving the flat profiled element. The free surface of the liquid cooling bath is arranged in an immediate vicinity of an outlet of the extruder die. Additionally, an angle of inclination of a plane of the extruder die to a horizontal plane is between 20 and 70 degrees.
    Type: Grant
    Filed: January 13, 2011
    Date of Patent: July 24, 2012
    Assignee: Michelin Recherche et Technique S.A.
    Inventors: Vincent Abad, Luc Chebance, Vincent Lemal
  • Patent number: 8226744
    Abstract: A method for purifying or separating a gas mixture comprising at least one fuel, using a unit having at least one adsorber subjected to a pressure cycle comprising at least one step of placing under vacuum by means of a vacuum pump, wherein at least one adsorber and/or the vacuum pump, depressurized during the cycle, is repressurized at least partly by an external gas to said unit and not containing a sufficient quantity of oxidizer to create an inflammable mixture during this repressurization.
    Type: Grant
    Filed: October 19, 2009
    Date of Patent: July 24, 2012
    Assignee: L'Air Liquide Societe Anonyme pour l'Etude et l'Exploitation des Procedes Georges Claude
    Inventors: Christian Monereau, Natacha Haik-Beraud, Vincent Gueret, Anne Berthelemot
  • Patent number: 8220658
    Abstract: A system for evaporating excess water from a source includes a housing having: an air inlet, the air inlet directing air in a first direction; an air outlet; a plurality of channels arranged generally perpendicular to the first direction, the channels having undulations; and a water reservoir that feeds water into the channels. In some embodiments, baffles are created with walls that depend from the ceiling of the housing and that are interdigitated with dividers that separate the channels. This configuration can remove water generated by the source (such as an external compressor unit) in a quick and efficient manner.
    Type: Grant
    Filed: February 8, 2012
    Date of Patent: July 17, 2012
    Assignee: Parata Systems, LLC
    Inventors: Jason Cora, Matthew P. Daniels
  • Patent number: 8220986
    Abstract: A mixer impeller having high efficiency blades. The impeller may include a central hub and a plurality of blades attached to and extending radially outwardly from the hub such that leading edges thereof are inclined upwardly from trailing edges thereof.
    Type: Grant
    Filed: November 19, 2008
    Date of Patent: July 17, 2012
    Assignee: Chemineer, Inc.
    Inventors: Eric Edward Antonio Janz, Kevin J. Myers, William Fryers, Julian B. Fasano