Patents Examined by Robert Nguyen
  • Patent number: 9067322
    Abstract: An invention-based method for controlling a robot arrangement having at least one robot (R) and comprising the following steps: Establishing at least one general fault model (1) for a group of different treatment processes with predetermined processing errors (S1); Configuring the fault model for at least one specific processing error of a process of the group (S2); and Transmitting the configured fault model (1?) to a control system of the robot arrangement.
    Type: Grant
    Filed: April 13, 2012
    Date of Patent: June 30, 2015
    Assignee: KUKA Roboter GmbH
    Inventors: Andreas Keibel, Thomas Kohler
  • Patent number: 9031775
    Abstract: In certain embodiments, an apparatus comprises an input and one or more processors. The input receives known locations of wireless mobile nodes over a wireless link. The one or more processors determine geometric features associated with the locations, and calculate an apparatus location of the apparatus from the known locations and the geometric features.
    Type: Grant
    Filed: August 3, 2010
    Date of Patent: May 12, 2015
    Assignee: Raytheon Company
    Inventor: Bogart Vargas
  • Patent number: 9014903
    Abstract: An autonomous vehicle configured to determine the heading of an object-of-interest based on a point cloud. An example computer-implemented method involves: (a) receiving spatial-point data indicating a set of spatial points, each spatial point representing a point in three dimensions, where the set of spatial points corresponds to an object-of-interest; (b) determining, for each spatial point, an associated projected point, each projected point representing a point in two dimensions; (c) determining a set of line segments based on the determined projected points, where each respective line segment connects at least two determined projected points; (d) determining an orientation of at least one determined line segment from the set of line segments; and (e) determining a heading of the object-of-interest based on at least the determined orientation.
    Type: Grant
    Filed: May 22, 2012
    Date of Patent: April 21, 2015
    Assignee: Google Inc.
    Inventors: Jiajun Zhu, Dmitri A. Dolgov, Nathaniel Fairfield
  • Patent number: 9002516
    Abstract: A calibration method for calibration a tool center point for a robot manipulator includes the steps of: driving the tool to move above one of the inclined surfaces; defining a preset coordinate system TG; rotating the TCP relative to the UG-axis by about 180 degrees, calculating the value of ?w; updating the position parameters of the preset TCP, defining a new preset coordinate system TG?; rotating the TCP relative to the UG?-axis by about 90 degrees, calculating the value of ?v; updating the position parameters of the new preset TCP, defining a new preset coordinate system TG?; driving the tool to move above a planar horizontal surface; rotating the TCP relative to a axis by about 30 degrees, calculating the value of ?u; repeating the aforementioned steps until the deviation ?P (?w, ?v, ?u) is less than or equal to a maximum allowable deviation of the robot manipulator.
    Type: Grant
    Filed: October 10, 2012
    Date of Patent: April 7, 2015
    Assignees: Hong Fu Jin Precision Industry (ShenZhen) Co., Ltd., Hon Hai Precision Industry Co., Ltd.
    Inventors: Long-En Chiu, Yong Wu
  • Patent number: 8996306
    Abstract: A route search device including a database in which map information and facility information are stored, a reference location information obtaining unit that obtains reference location information as location information of a given point from an outside of the route search device, a location information obtaining unit that obtains location information of a desired facility from the outside, a corresponding location information obtaining unit that obtains corresponding location information as location information of a point corresponding to the given point, from the database, a location correction factor calculating unit that calculates a location correction factor, a location correction factor storage unit that stores the location correction factor, a location information correcting unit that corrects the location information of the desired facility, using the location correction factor, and a route searching unit that makes a search for a route to the desired facility, based on the corrected location informa
    Type: Grant
    Filed: October 20, 2010
    Date of Patent: March 31, 2015
    Assignees: Toyota Jidosha Kabushiki Kaisha, Denso Corporation, Aisin AW Co., Ltd.
    Inventors: Tomoki Kodan, Yasuhiro Shimizu, Ichiro Usami, Hiroyuki Kozakai
  • Patent number: 8983657
    Abstract: A system and a method of managing one or more vehicles deployed in a worksite are provided. The system includes a battery management module which may receive, via a data network, battery health information and/or location co-ordinates from at least one vehicle. The battery management module is configured to issue a battery changing command, via the data network, to a battery-changing device based at least on the battery health information and the location co-ordinates of the vehicles. The battery-changing device may be configured to change at least one battery on the at least one vehicle with charged batteries based on the issued command. The battery-changing device is configured to return each of the changed battery to a central station to recharge the changed battery.
    Type: Grant
    Filed: August 31, 2011
    Date of Patent: March 17, 2015
    Assignee: Caterpillar Inc.
    Inventor: Evan E. Jacobson
  • Patent number: 8958983
    Abstract: A server arranged to process GPS data to generate enhanced map data is disclosed. The enhanced map data includes a plurality of navigable segments representing segments of a navigable route in an area covered by a map. In at least one embodiment, the server is connected with a wireless telecommunications transceiver arranged to receive GPS fixes by wireless telecommunication from a plurality of navigation devices and send the received GPS fixes to the server, the server includes a processor arranged to generate at least one speed profile for each segment from the GPS fixes from at least two of the plurality of navigation devices, each speed profile comprising an expected speed of travel through the segment, and the server is arranged to subsequently cause the transceiver to send the speed profiles to the navigation devices.
    Type: Grant
    Filed: October 22, 2008
    Date of Patent: February 17, 2015
    Assignee: TomTom International B.V.
    Inventors: Ralf-Peter Schäfer, Peter Mieth, Ian Malcolm Atkinson, Martin Wolf, Ben Rutten, Karine Hilbrandie
  • Patent number: 8954266
    Abstract: Providing directions from point A to point B may be treated as an information retrieval problem. In one example, actual routes that are traveled by people are received, and are stored in a database. When a person requests directions from point A to point B, a system searches the database to determine whether a route from A to B exists. If the route does exist, then the route may be provided as directions in response to the request. If no such route exists, then the system looks in the database for routes that have some amount of overlap with each other, and attempts to construct a route from A to B by joining known routes that overlap with each other. Rules may govern the degree of overlap that routes are to have before they can be joined.
    Type: Grant
    Filed: June 28, 2011
    Date of Patent: February 10, 2015
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: Eyal Ofek, Jeffrey Couckuyt, Gur Kimchi, Brian Beckman
  • Patent number: 8954194
    Abstract: A system increases an operator's situational awareness while the operator controls a remote vehicle. The system comprises an operator control unit having a point-and-click interface configured to allow the operator to view an environment surrounding the remote vehicle and control the remote vehicle, and a payload attached to the remote vehicle and in communication with at least one of the remote vehicle and the operator control unit. The payload comprises an integrated sensor suite including GPS, an inertial measurement unit, a stereo vision camera, and a range sensor, and a computational module receiving data from the GPS, the inertial measurement unit, the stereo vision camera, and the range sensor and providing data to a CPU including at least one of an autonomous behavior and a semi-autonomous behavior that utilize data from the integrated sensor suite.
    Type: Grant
    Filed: May 12, 2011
    Date of Patent: February 10, 2015
    Assignee: iRobot Corporation
    Inventors: Daniel Allis, Robert Todd Pack
  • Patent number: 8935005
    Abstract: A method of operating a mobile robot to traverse a threshold includes detecting a threshold proximate the robot. The robot includes a holonomic drive system having first, second, and third drive elements configured to maneuver the robot omni-directionally. The method further includes moving the first drive element onto the threshold from a first side and moving the second drive element onto the threshold to place both the first and second drive elements on the threshold. The method includes moving the first drive element off a second side of the threshold, opposite to the first side of the threshold, and moving the third drive element onto the threshold, placing both the second and third drive elements on the threshold. The method includes moving both the second and third drive elements off the second side of the threshold.
    Type: Grant
    Filed: February 22, 2011
    Date of Patent: January 13, 2015
    Assignee: iRobot Corporation
    Inventors: Michael Rosenstein, Steven V. Shamlian, Chikyung Won, Michael Halloran, Mark Chiappetta, Thomas P. Allen
  • Patent number: 8918209
    Abstract: A mobile robot that includes a drive system, a controller in communication with the drive system, and a volumetric point cloud imaging device supported above the drive system at a height of greater than about one feet above the ground and directed to be capable of obtaining a point cloud from a volume of space that includes a floor plane in a direction of movement of the mobile robot. The controller receives point cloud signals from the imaging device and issues drive commands to the drive system based at least in part on the received point cloud signals.
    Type: Grant
    Filed: February 22, 2011
    Date of Patent: December 23, 2014
    Assignee: iRobot Corporation
    Inventors: Michael T. Rosenstein, Michael Halloran, Steven V. Shamlian, Chikyung Won, Mark Chiappetta
  • Patent number: 8918213
    Abstract: A mobile human interface robot that includes a base defining a vertical center axis and a forward drive direction and a holonomic drive system supported by the base. The drive system has first, second, and third driven drive wheels, each trilaterally spaced about the vertical center axis and having a drive direction perpendicular to a radial axis with respect to the vertical center axis. The robot further includes a controller in communication with the holonomic drive system, a torso supported above the base, and a touch sensor system in communication with the controller. The touch sensor system is responsive to human contact. The controller issues drive commands to the holonomic drive system based on a touch signal received from the touch sensor system.
    Type: Grant
    Filed: February 22, 2011
    Date of Patent: December 23, 2014
    Assignee: iRobot Corporation
    Inventors: Michael Rosenstein, Chikyung Won, Geoffrey B. Lansberry, Steven V. Shamlian, Michael Halloran, Mark Chiappetta, Thomas P. Allen
  • Patent number: 8892329
    Abstract: A plurality of position data sets representing a plurality of points on a road ahead of a vehicle are acquired, and the degree of curvature of the road at each point is computed. On the basis of the degree of curvature, a constant curvature degree section of a curve is identified, and the degree of curvature and the end position of the constant curvature degree section are determined. In order to cause the vehicle to properly pass through the curve, curve deceleration control is executed on the basis of the actual vehicle speed, a proper vehicle speed determined from the degree of curvature, and the end position of the constant curvature degree section. That is, the curve deceleration control is performed on the basis of the start point of a section of a curve having the maximum degree of curvature and the constant degree of curvature of that section.
    Type: Grant
    Filed: August 3, 2010
    Date of Patent: November 18, 2014
    Assignee: Advics Co., Ltd.
    Inventors: Yoshiyuki Yasui, Hideaki Koto, Manabu Tanaka, Takayuki Miyajima
  • Patent number: 8880253
    Abstract: A method of controlling an electric vehicle including an internal combustion engine, a battery having a state of charge (SOC) and an open circuit voltage (OCV), includes establishing a system for estimating battery SOC. The system includes (i) a parameter estimation subsystem including a recursive parameter estimator for identifying battery parameters and (ii) an OCV estimation subsystem including a nonlinear adaptive observer for estimating battery OCV. Estimated battery OCV is related to estimated battery SOC by a mapping. An output is generated based on the estimated battery SOC.
    Type: Grant
    Filed: June 28, 2011
    Date of Patent: November 4, 2014
    Assignee: Ford Global Technologies, LLC
    Inventors: Yonghua Li, Richard Dyche Anderson, Jing Song
  • Patent number: 8880304
    Abstract: A method for determining numbers of gear steps N for a gearbox in a motor vehicle. The vehicle has an engine connected to drive the gearbox. The numbers of gear steps N is the number of downshifts or the number of upshifts which the gearbox effects at an upshift point or a downshift point. A downshift point represents a first engine speed at which the gearbox effects a downshift. An upshift point represents a second engine speed at which the gearbox effects an upshift. The numbers of gear steps N are determined on the basis of a predicted acceleration a for the motor vehicle during a time period T. The invention relates also to a system, a motor vehicle, a computer program and a computer program product thereof for performing the method.
    Type: Grant
    Filed: September 13, 2010
    Date of Patent: November 4, 2014
    Assignee: Scania CV AB
    Inventors: Fredrik Swartling, Anders Kjell, Tom Nyström
  • Patent number: 8874337
    Abstract: A system according to the principles of the present disclosure includes a selected gear module and a shift indicator module. The selected gear module determines a selected gear of a manual transmission. The shift indicator module monitors vehicle speed and the selected gear and generates a shift indicator signal based on the vehicle speed and the selected gear, the shift indicator signal indicating when to shift to one of first gear and reverse gear.
    Type: Grant
    Filed: September 6, 2011
    Date of Patent: October 28, 2014
    Inventors: William L. Cousins, James M. Partyka
  • Patent number: 8874336
    Abstract: Featured is are methods and systems for bedding-in an automatic transmission of a vehicle prior to delivery of the vehicle to an end customer. Such a bedding-in method is performed so as to reduce the occurrence of shifting problems or concerns occurring during the initial stages of ownership of the vehicle. More particularly, such a bedding-in method includes providing an automatic transmission having a controller that is configured to measure and learn about powertrain variation(s) and configured to adapt one or more operational parameters associated with shifting of the automatic transmission. Such a method also includes operating the vehicle according to a predetermined protocol before the vehicle reaches an end customer. Such a protocol being established so the transmission controller can learn about powertrain variations and adapt operation of the transmission to minimize effects on shifting of the transmission.
    Type: Grant
    Filed: February 29, 2012
    Date of Patent: October 28, 2014
    Assignees: Hyundai America Technical Center, Inc., Kia Motors Corporation, Hyundai Motor Company
    Inventors: Raymond J. Tessier, Jr., Anthony Golletti, Thomas Kieffer
  • Patent number: 8862271
    Abstract: A proximity sensor includes first and second sensors disposed on a sensor body adjacent to one another. The first sensor is one of an emitter and a receiver. The second sensor is the other one of an emitter and a receiver. A third sensor is disposed adjacent the second sensor opposite the first sensor. The third sensor is an emitter if the first sensor is an emitter or a receiver if the first sensor is a receiver. Each sensor is positioned at an angle with respect to the other two sensors. Each sensor has a respective field of view. A first field of view intersects a second field of view defining a first volume that detects a floor surface within a first threshold distance. The second field of view intersects a third field of view defining a second volume that detects a floor surface within a second threshold distance.
    Type: Grant
    Filed: September 23, 2013
    Date of Patent: October 14, 2014
    Assignee: iRobot Corporation
    Inventors: Steven V. Shamlian, Samuel Duffley, Nikolai Romanov, Frederick D. Hook, Mario E. Munich, Dhiraj Goel
  • Patent number: 8855838
    Abstract: The invention relates to an automatic takeoff method for an aircraft with a flexible airfoil, comprising a carriage suspended by rigging lines from an airfoil. According to said method: —said carriage is provided with an autopilot controlling actuators that control said rigging lines; —said airfoil is provided with an airfoil attitude sensor, comprising a biaxial accelerometer and a biaxial rate gyro, capable of defining the position of an airfoil reference frame in relation to the ground, and means for communicating with said autopilot; —during takeoff, information is received from said airfoil attitude sensor and transmitted to said autopilot for the purpose of controlling said actuators. The invention also relates to an airfoil for the implementation of said method, comprising an airfoil attitude sensor with an inertial unit with a biaxial accelerometer and a biaxial rate gyro, and means for communicating with an autopilot. The invention further relates to an aircraft comprising such an airfoil.
    Type: Grant
    Filed: October 28, 2009
    Date of Patent: October 7, 2014
    Assignee: Swissavia SA
    Inventor: Bernard Berthier
  • Patent number: 8855824
    Abstract: The dual arm robot includes a first arm including a first hand, a first visual sensor and a first force sensor, and a second arm including a second hand, a second visual sensor and a second force sensor, uses each visual sensor to detect positions of a lens barrel and a fixed barrel to hold and convey them to a central assembling area, uses the first visual sensor to measure a position of a flexible printed circuits to insert the flexible printed circuits into the fixed barrel, and uses outputs of the force sensors to fit and assemble the fixed barrel onto the lens barrel under force control. The dual arm robot converts a position coordinate of a workpiece detected by each visual sensor to a robot coordinate to calculate a trajectory of each hand and drive each arm, to thereby realize cooperative operation of the two arms.
    Type: Grant
    Filed: November 29, 2010
    Date of Patent: October 7, 2014
    Assignee: Canon Kabushiki Kaisha
    Inventor: Kazunori Ogami