Patents Examined by Samantha K Abraham
  • Patent number: 10803725
    Abstract: A method and apparatus for determining presence of an object to be tidied in a washroom. A beam is supplied to a surface of the washroom at a first location. A reflected beam received from the surface of the washroom or received from an object in the path of the beam to the surface is detected. The presence of the object is determined from feedback from the beam based on a comparison of the feedback with a detection result when the beam reflects from the surface at the first location. An object to be tidied output signal is issued indicating that an object to be tidied is present based on the determination on the presence of an object.
    Type: Grant
    Filed: December 8, 2017
    Date of Patent: October 13, 2020
    Assignee: ESSITY HYGIENE AND HEALTH AKTIEBOLAG
    Inventors: Anders Gustafsson, Eva-Li Saarväli, Urban Gabrielsson
  • Patent number: 10795000
    Abstract: A laser distance and ranging (LADAR) apparatus is provided. The LADAR apparatus includes a first substrate, a LADAR module coupled to the first substrate, and an actuation unit coupled between the first substrate and the LADAR module. The LADAR module is configured to scan with a predetermined field of view in a first viewing position from said LADAR module, and the actuation unit is selectively operable to modify an orientation of the LADAR module such that the predetermined field of view moves from the first viewing position towards a second viewing position from the LADAR module.
    Type: Grant
    Filed: July 10, 2015
    Date of Patent: October 6, 2020
    Assignee: The Boeing Company
    Inventors: Scott Singer, Robert Douglas Moss
  • Patent number: 10794998
    Abstract: Lidar is an acronym for Light Detection And Ranging. The technology may be used to measure distance by illuminating a target with a laser beam and performing analysis on the reflected laser beam light. In the atmospheric sciences, Lidar may be used to study the optical depth of clouds, the impact of aerosols on clouds, and the interactions between aerosols and clouds on the climate. The present application proposes a lidar-based technology using a diode laser (101) beam sent through a tapered semiconductor optical amplifier (106) and an axicon pair expander (108) wherein the laser light may be transmitted through a telescope (110) at an object to be studied. Upon striking the object to be studied, the laser (101) is reflected and recovered by the telescope (110). The reflected laser is then sent through a heated rubidium vapor cell (115) and a total detection channel (116) for analysis.
    Type: Grant
    Filed: April 4, 2016
    Date of Patent: October 6, 2020
    Assignees: University Corporation for Atmospheric Research, Wisconsin Alumni Research Foundation
    Inventors: Scott Spuler, Matthew Hayman, Bruce Morley, Edwin W. Eloranta
  • Patent number: 10788582
    Abstract: The LIDAR chip includes a utility waveguide that guides an outgoing LIDAR signal to a facet through which the outgoing LIDAR signal exits from the chip. The chip also includes a control branch that removes a portion of the outgoing LIDAR signal from the utility waveguide. The control branch includes a control light sensor that receives a light signal that includes light from the removed portion of the outgoing LIDAR signal. The chip also includes a data branch that removes a second portion of the outgoing LIDAR signal from the utility waveguide. The data branch includes a light-combining component that combines a reference light signal that includes light from the second portion of the outgoing LIDAR signal with a comparative light signal that includes light that was reflected off an object located off of the chip.
    Type: Grant
    Filed: May 11, 2018
    Date of Patent: September 29, 2020
    Assignee: SiLC Technologies, Inc.
    Inventors: Dazeng Feng, Bradley Jonathan Luff, Mehdi Asghari
  • Patent number: 10782393
    Abstract: Disclosed herein are various embodiment of an adaptive ladar receiver and associated method whereby the active pixels in a photodetector array used for reception of ladar pulse returns can be adaptively controlled based at least in part on where the ladar pulses were targeted. Additional embodiments disclose improved imaging optics for use by the receiver and further adaptive control techniques for selecting which pixels of the photodetector array are used for sensing incident light.
    Type: Grant
    Filed: February 10, 2017
    Date of Patent: September 22, 2020
    Assignee: AEYE, INC.
    Inventors: Luis Carlos Dussan, Allan Steinhardt, David Cook
  • Patent number: 10782311
    Abstract: Imaging of complex, non-stationary three dimensional (3D) flow velocities is achieved by encoding depth into color. A flow volume 22 is illuminated with a continuum 40 of light planes 42 whereby each depth corresponds to a respective light plane 14 having a specific wavelength of light. A diffractive component 46 in the camera 24 optics, which records the trajectories of illuminated particles 20 within the flow volume 22, ensures that all light planes 42 are in focus simultaneously. The setup permits a user to track 3D trajectories of particles 20 within the flow volume 22 by combining two dimensional (2D) spatial and one dimensional (1D) color information. For reconstruction, an image formation model for recovering stationary 3D particle positions is provided. 3D velocity estimation is achieved with a variant of a 3D optical flow approach that accounts for both physical constraints as well as the color (rainbow) image formation model.
    Type: Grant
    Filed: April 26, 2017
    Date of Patent: September 22, 2020
    Assignee: KING ABDULLAH UNIVERSITY OF SCIENCE AND TECHNOLOGY
    Inventors: Wolfgang Heidrich, Jinhui Xiong, Xiong Dun, Ramzi Idoughi, Sigurdur Tryggvi Thoroddsen, Andres A. Aguirre-Pablo, Abdulrahman B. Aljedaani, Erqiang Li
  • Patent number: 10768282
    Abstract: A system and method for optical detection in autonomous vehicles includes modulating an optical signal from a laser to generate a modulated optical signal and transmitting the modulated optical signal toward an object. The system and method include receiving, responsive to transmitting the modulated optical signal, a returned optical signal and mixing the returned optical signal with a reference optical signal associated with the optical signal from the laser to generate a mixed optical signal and detecting the mixed optical signal to generate an electrical signal. Based on the electrical signal and the modulated optical signal, a parameter of an internal reflection of the returned optical signal from one or more optical components is determined, which may be used to operate a vehicle.
    Type: Grant
    Filed: November 12, 2019
    Date of Patent: September 8, 2020
    Assignee: BLACKMORE SENSORS & ANALYTICS, LLC
    Inventors: Stephen C. Crouch, Emil Kadlec, Krishna Rupavatharam
  • Patent number: 10761188
    Abstract: A projection system emits light pulses in a field of view and measures properties of reflections. Properties may include time of flight and return amplitude. Foreground objects and background surfaces are distinguished, distances between foreground objects and background surfaces are determined based on reflections that are occluded by the foreground objects and other properties of the projection system.
    Type: Grant
    Filed: December 27, 2016
    Date of Patent: September 1, 2020
    Assignee: Microvision, Inc.
    Inventors: P. Selvan Viswanathan, Jonathan A. Morarity, Alga Lloyd Nothern, III, Bin Xue
  • Patent number: 10754035
    Abstract: A ground-classifier system that classifies ground-cover proximate to an automated vehicle includes a lidar, a camera, and a controller. The lidar that detects a point-cloud of a field-of-view. The camera that renders an image of the field-of-view. The controller is configured to define a lidar-grid that segregates the point-cloud into an array of patches, and define a camera-grid that segregates the image into an array of cells. The point-cloud and the image are aligned such that a patch is aligned with a cell. A patch is determined to be ground when the height is less than a height-threshold. The controller is configured to determine a lidar-characteristic of cloud-points within the patch, determine a camera-characteristic of pixels within the cell, and determine a classification of the patch when the patch is determined to be ground, wherein the classification of the patch is determined based on the lidar-characteristic and the camera-characteristic.
    Type: Grant
    Filed: January 17, 2017
    Date of Patent: August 25, 2020
    Assignee: Aptiv Technologies Limited
    Inventors: Ronald M. Taylor, Izzat H. Izzat
  • Patent number: 10746856
    Abstract: A light scanning type object detecting device includes a mirror unit in which first and second mirror surfaces are formed so as to incline in respective directions intersecting with a rotation axis and to face each other with a predetermined angle, a light source; and a light receiving element. On the assumption that H represents a distance between an intersection point of extension lines of lateral sides and a bottom side in the first mirror surface, r represents a radius of a received light flux, h represents a distance between the center of the received light flux and the bottom side, and H? represents a distance between a top side and the bottom side, formulas (1) and (2) are satisfied. when r<0.4H, 0.1<h/H?(H??r)/H??(1) when r?0.4H, 0.
    Type: Grant
    Filed: October 4, 2016
    Date of Patent: August 18, 2020
    Assignee: KONICA MINOLTA, INC.
    Inventors: Kazutaka Noguchi, Ryouta Ishikawa, Kazuki Matsui
  • Patent number: 10746878
    Abstract: A method of measuring a distance by using a 3-dimensional (3D) depth sensor is provided. The method may include: measuring m number of frames using light modulated at a first frequency to determine a first tentative distance from a viewpoint to an object at the first frequency, m being a positive integer; measuring n number of frames using light modulated at a second frequency to determine a second tentative distance from the viewpoint to the object at the second frequency, n being a positive integer, a sum of m and n being four; and determining a resulting distance to the object based on the first distance and the second distance.
    Type: Grant
    Filed: March 22, 2016
    Date of Patent: August 18, 2020
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Heesun Yoon, Jangwoo You, Yonghwa Park
  • Patent number: 10739445
    Abstract: A method of lidar processing pulses a scene with laser pulse sequences from a laser light source. Reflected light from the target scene passes through receiver optics and is defocused to cover a light sensing surface of a photo detector array. The photo detector array contains multiple photon detector elements connected in parallel where each photon detector element is configured to generate corresponding photon pulse output signals based on sensing photons in the received reflected light, and each photon detector element is characterized by a non-responsive dead time period immediately after sensing a photon. The photon pulse output signals are combined to form a common real time output signal, which is converted to a digital time resolved histogram. Multiple digital time resolved histograms produced in response to multiple light pulses directed at a scanning location are combined to form a composite time resolved histogram for the scanning location.
    Type: Grant
    Filed: May 17, 2019
    Date of Patent: August 11, 2020
    Assignee: The Charles Stark Draper Laboratory, Inc.
    Inventors: Joseph Hollmann, Zachary R. Hoffman
  • Patent number: 10739441
    Abstract: In some examples, a system comprises a laser light source and a rotatable mirror assembly comprising a plurality of mirror segments, the rotatable mirror assembly aligned to reflect light transmitted by the laser light source, wherein the plurality of mirror segments comprise a first segment that reflects a first light beam from the laser light source in a first direction, and a second mirror segment that reflects the first light beam from the laser light source in a second direction, different from the first direction. In some examples, the system comprises a light sensor positioned to receive light reflected from the rotatable mirror assembly. In some examples, the system comprises a motor for rotating the mirror assembly about a rotation axis. In some examples, the system comprises a controller for controlling a sampling phase of sampling the light sensor.
    Type: Grant
    Filed: September 29, 2017
    Date of Patent: August 11, 2020
    Assignee: FARADAY & FUTURE INC.
    Inventor: Bartholomeus C. Nabbe
  • Patent number: 10732283
    Abstract: A system for landing or docking a mobile platform is enabled by a flash LADAR sensor having an adaptive controller with Automatic Gain Control (AGC). Range gating in the LADAR sensor penetrates through diffuse reflectors. The LADAR sensor adapted for landing/approach comprises a system controller, pulsed laser transmitter, transmit optics, receive optics, a focal plane array of detectors, a readout integrated circuit, camera support electronics and image processor, an image analysis and bias calculation processor, and a detector array bias control circuit. The system is capable of developing a complete 3-D scene from a single point of view.
    Type: Grant
    Filed: December 20, 2017
    Date of Patent: August 4, 2020
    Assignee: Continental Advanced Lidar Solutions US, LLC
    Inventors: Patrick Gilliland, Robert W Koseluck, Steve Penniman, Brad Short, Joseph Spagnolia, Roger Stettner
  • Patent number: 10725157
    Abstract: An active illumination three-dimensional sensor device is configured with a number of diagnostic functions that can satisfy the requirements of industrial safety within the context of a single-channel safety sensor architecture. The sensor diagnostic functions provide sufficient diagnostic coverage for an optical safety sensor (e.g., a time-of-flight safety sensor) to achieve a desired safety integrity level without the need for multiple channels. The diagnostic features can be applied to one or more components along the single-channel path (e.g., the sequencer, the illumination source, input and/or output optics, image sensor pixel, etc.) to provide a level of diagnostic coverage that renders the optical safety sensor suitable for use within industrial safety applications requiring high safety integrity levels.
    Type: Grant
    Filed: April 5, 2019
    Date of Patent: July 28, 2020
    Assignee: Rockwell Automation Technologies, Inc.
    Inventors: Chris Yates, Frederic Boutaud, Igor Abrosimov, Chris Softley, Michael M. Tilleman, Richard Galera, Arvind Ananthanaraya
  • Patent number: 10718613
    Abstract: Laser light source geolocation. The system includes two spaced-apart ground based sensors for receiving light from a laser source that has been off-axis scattered by air molecules and particulates to form scattered light imagery. A processor operates on the imagery from the two sensors to geolocate the laser light source on the ground.
    Type: Grant
    Filed: December 28, 2016
    Date of Patent: July 21, 2020
    Assignee: Massachusetts Institute of Technology
    Inventors: Julia A. Fang, Brian Saar, Tom Reynolds, James K. Kuchar, Richard Charles Westhoff, Erin Tomlinson
  • Patent number: 10712432
    Abstract: Time-of-flight (TOF) based systems using light pulse compression are described and, in some cases, can help increase demodulation contrast. Further, light pulse shaping techniques are described that, in some cases, can help reduce phase non-linearity and distance-calculation errors. The techniques can be used, for example, in measurement systems, as well as imaging systems in which a time-of-flight and/or distance information is obtained. The time-of-flight and/or distance information can be used to reconstruct and display a three-dimensional image of a scene. The light compression techniques also can be used to provide reference signals.
    Type: Grant
    Filed: December 10, 2014
    Date of Patent: July 14, 2020
    Assignee: ams Sensors Singapore Pte. Ltd.
    Inventor: Michael Lehmann
  • Patent number: 10704865
    Abstract: Techniques are provided for a laser designation verification device and a method of laser designation verification using the device. The laser designation verification device includes: a lens to sense a first reflection, the first reflection coming from an encoded first laser beam reflecting off a first target; an electronic processing element to decode the sensed first reflection into a first code; and a portable electronic annunciator to provide identification of the first target to an operator of the device based on the decoded first reflection. The method includes: sensing a first reflection using the lens, the first reflection coming from an encoded first laser beam reflecting off a first target; decoding the sensed first reflection into a first code using the processing element; and providing, by the annunciator to an operator of the device, identification of the first target based on the decoded first reflection.
    Type: Grant
    Filed: August 4, 2017
    Date of Patent: July 7, 2020
    Assignee: BAE Systems Information and Electronic Systems Integration Inc.
    Inventors: James H. Steenson, Jr., Derek P. Janiak
  • Patent number: 10705189
    Abstract: The present disclosure provides a multi-beam LiDAR system. The multi-beam LiDAR system includes a transmitter having an array of laser emitters. Each laser emitter is configured to emit a laser beam. The laser emitter array includes a first type of laser emitter board and a second type of laser emitter board. The second type of laser board includes two or more laser emitters. The second type of laser emitter board is not parallel to a predefined plane.
    Type: Grant
    Filed: November 22, 2019
    Date of Patent: July 7, 2020
    Assignee: SUTENG INNOVATION TECHNOLOGY CO., LTD.
    Inventors: Chunxin Qiu, Letian Liu
  • Patent number: 10690495
    Abstract: A ranging apparatus capable of suppressing reduction of ranging accuracy at a long distance end of a distance measurement range, thereby making it possible to perform high-accuracy ranging over a wide distance range. An image pickup device receives light fluxes from a fixed focus optical system. A distance information acquisition unit acquires distance information of an object based on image signals from the image pickup device. This section acquires the distance information based on parallax between a first image based on a light flux having passed a first region of an exit pupil, and a second image based on a light flux having passed a second region of the exit pupil. The optical system is configured such that parallax of an object existing at a predetermined distance is smaller than parallax of an object existing at a shorter distance than the predetermined distance.
    Type: Grant
    Filed: March 6, 2017
    Date of Patent: June 23, 2020
    Assignee: Canon Kabushiki Kaisha
    Inventors: Akinari Takagi, Kazuya Nobayashi