Patents Examined by Scott J Chmielecki
  • Patent number: 10897049
    Abstract: A separator assembly for a fuel cell includes a first separator, a second separator, and a joined portion. In the joined portion, the first separator and the second separator are joined to each other through laser welding. The first separator includes a first surface that is intended to be opposed to the membrane electrode assembly. The first surface of the first separator includes an exposed portion where the base of the first separator is exposed. The second separator includes a second surface that is intended to be opposed to the membrane electrode assembly. A film including conductive particles is arranged on the entire second surface of the second separator. The joined portion is formed by irradiating the exposed portion of the first separator with laser.
    Type: Grant
    Filed: March 7, 2019
    Date of Patent: January 19, 2021
    Assignee: TOYOTA SHATAI KABUSHIKI KAISHA
    Inventors: Eiichiro Morozumi, Michi Hashiba, Takayuki Suzuki
  • Patent number: 10886565
    Abstract: The present disclosure provides an electrolyte and an electrochemical energy storage device, the electrolyte comprises an electrolyte salt and an additive. The additive comprises a sulfonic ester cyclic quaternary ammonium salt and a multinitrile compound. The sulfonic ester cyclic quaternary ammonium salt and the multinitrile compound can form a dense and uniform passive film with high ionic conductivity on a surface of each of the positive electrode film and the negative electrode film, so as to prevent continuous oxidation and reduction reaction from occurring between the electrolyte and the positive electrode film and the negative electrode film and make the electrochemical energy storage device has excellent high temperature cycle performance and high temperature storage performance.
    Type: Grant
    Filed: July 3, 2018
    Date of Patent: January 5, 2021
    Assignee: CONTEMPORARY AMPEREX TECHNOLOGY CO., LIMITED
    Inventors: Xiaomei Wang, Chenghua Fu, Changlong Han
  • Patent number: 10886543
    Abstract: The present disclosure relates to a redox flow battery using an electrolyte concentration gradient, capable of increasing the efficiency of the redox flow battery, and to an operation method thereof. The redox flow battery includes a catholyte tank having an electrolyte inlet at the top thereof and an electrolyte outlet at the bottom thereof and having a partition plate for forming a concentration gradient of a catholyte received therein, an anolyte tank having an electrolyte inlet at the top thereof and an electrolyte outlet at the bottom thereof and having a partition plate for forming a concentration gradient of an anolyte received therein, and a stack for charging and discharging power by receiving the catholyte and the anolyte supplied from the catholyte tank and the anolyte tank.
    Type: Grant
    Filed: March 13, 2019
    Date of Patent: January 5, 2021
    Assignee: Doosan Heavy Industries Construction Co., Ltd
    Inventors: Sung Ku Park, Ju Young Youn, Young Hoon Rhie
  • Patent number: 10886570
    Abstract: The present invention provides a secondary battery, comprising a winding bare electrode assembly, a battery pouch and a sealing strip. The winding bare electrode assembly comprises an separator and a tab. The sealing strip encloses a part of the tab of the winding bare electrode assembly, is used for hermetically extending the tab of the winding bare electrode assembly out from the battery pouch of the secondary battery, and is provided with a package portion located in a package area of the battery pouch of the secondary battery, and an extension portion disposed in the battery pouch.
    Type: Grant
    Filed: May 31, 2018
    Date of Patent: January 5, 2021
    Inventors: Xin Jin, Tao Tao, Jie Xi
  • Patent number: 10879538
    Abstract: An oxygen evolution catalyst includes a core and a shell covering the surface of the core. The core includes ruthenium oxide or metal ruthenium in at least a surface portion. The shell includes titania or a composite oxide of titanium and ruthenium. Such an oxygen evolution catalyst is obtained by (a) dispersing core particles each including ruthenium oxide or metal ruthenium in at least a surface portion in a solvent to obtain a dispersion, (b) adding a Ti source to the dispersion to produce precursor particles in which the surface of each core particle is covered with a titania precursor, and (c) collecting the precursor particles from the dispersion and heat-treating the precursor particles after drying.
    Type: Grant
    Filed: January 30, 2019
    Date of Patent: December 29, 2020
    Assignees: KABUSHIKI KAISHA TOYOTA CHUO KENKYUSHO, TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Shuhei Yoshino, Kensaku Kodama, Yoshio Sageshima, Keiichiro Oishi, Yoriko Hasegawa, Noriyuki Kitao
  • Patent number: 10873113
    Abstract: Method for controlling the temperature of an electrochemical energy storage system (100), wherein the energy storage system (100) comprises at least two electrochemical energy stores (101, 102) and an air-conditioning apparatus (114) having an air-conditioning circuit (115) for air-conditioning the energy store (101, 102).
    Type: Grant
    Filed: April 2, 2018
    Date of Patent: December 22, 2020
    Assignee: Robert Bosch GmbH
    Inventors: Alexander Lautenschlaeger, Federico Brivio, Jens Koerner, Klaus-Juergen Schuler, Xuwen Li
  • Patent number: 10873088
    Abstract: Provided is a lithium-selenium battery, comprising a cathode, an anode, and a porous separator/electrolyte assembly, wherein the anode comprises an anode active layer containing lithium or lithium alloy as an anode active material, and the cathode comprises a cathode active layer comprising a selenium-containing material, wherein an anode-protecting layer is disposed between the anode active layer and the separator/electrolyte and/or a cathode-protecting layer is disposed between the cathode active layer and the separator/electrolyte; the protecting layer comprising from 0.01% to 40% by weight of a conductive reinforcement material and from 0.01% to 40% by weight of an electrochemically stable inorganic filler dispersed in a sulfonated elastomeric matrix material and having a thickness from 1 nm to 100 ?m, a fully recoverable tensile strain from 2% to 500%, a lithium ion conductivity from 10?7 S/cm to 5×10?2 S/cm, and an electrical conductivity from 10?7 S/cm to 100 S/cm.
    Type: Grant
    Filed: August 28, 2018
    Date of Patent: December 22, 2020
    Assignee: Global Graphene Group, Inc.
    Inventors: Hui He, Aruna Zhamu, Bor Z. Jang
  • Patent number: 10873093
    Abstract: A fuel cell includes an exhaust gas flow path provided between a pair of separators that are arranged across a membrane electrode assembly and a resin frame placed therebetween. The exhaust gas flow path includes a first flow path portion extended from a power generation portion toward a manifold portion; a second flow path portion and a third flow path portion extended side by side on a downstream side of the first flow path portion and including downstream ends respectively connected with the manifold portion; and a linkage part connected with a downstream end of the first flow path portion, an upstream end of the second flow path portion and an upstream end of the third flow path portion. An extended region of the downstream end of the first flow path portion is extended toward the upstream end of the third flow path portion in the linkage part.
    Type: Grant
    Filed: June 4, 2019
    Date of Patent: December 22, 2020
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Nobuaki Nonoyama, Seiji Mizuno
  • Patent number: 10868284
    Abstract: A battery for use in electronic devices and which is safely ingested into a body and a related method of making the battery. The battery includes an anode, a cathode and a quantum tunneling composite coating. The quantum tunneling composite coating covers at least a portion of at least one of the anode or the cathode and provides pressure sensitive conductive properties to the battery including a compressive stress threshold for conduction. The compressive stress threshold may be greater than a pre-determined applied stress in a digestive tract of the body in order to prevent harm if the battery is ingested. The battery may include a waterproof seal that extends between the quantum tunneling composite coating and a gasket separating the anode and cathode to inhibit the battery from short circuiting in a conductive fluid below the compressive stress threshold.
    Type: Grant
    Filed: July 8, 2019
    Date of Patent: December 15, 2020
    Assignees: The Brigham and Women's Hospital, Massachusetts Institute of Technology
    Inventors: Bryan Laulicht, Janet Freilich, Jeffrey M. Karp, Robert Langer
  • Patent number: 10862143
    Abstract: Methods, systems, and devices of a control system. The control system includes a fuel cell stack. The control system includes a compressor that is configured to control and provide a total air flow within the vehicle. The compressor has an air pressure ratio and an air flow rate and operates at a speed. The control system includes an electronic control unit coupled to the fuel cell stack and the compressor. The electronic control unit is configured to determine a path associated with one or more adjustments to the air pressure ratio or the air flow rate. The electronic control unit is configured to determine a rate associated with the one or more adjustments based on the path and control at least one of the air pressure ratio, the speed or the air flow rate to operate the compressor based on the path and the rate.
    Type: Grant
    Filed: January 30, 2019
    Date of Patent: December 8, 2020
    Assignees: TOYOTA MOTOR ENGINEERING & MANUFACTURING NORTH AMERICA, INC.
    Inventors: Jared M. Farnsworth, Daniel Folick, Shigeki Hasegawa, Naoki Tomi
  • Patent number: 10854866
    Abstract: An electric power apparatus is disclosed for use in powering an electric vehicle with an exhaust channel. The electric power apparatus can include a battery housing and multiple cell tubes. The multiple cell tubes can support multiple battery cells within the multiple cell tubes so that individual of the multiple battery cells may be positioned within individual of the multiple cell tubes. The multiple cell tubes can be supported by the battery housing and direct combustion components from any fires in the multiple battery cells in a common direction. The multiple battery cells can each be self-contained and removable from the multiple cell tubes. The multiple battery cells can be electrically connected to power a motor that propels a vehicle housing, and the vehicle housing can support the battery housing and the motor.
    Type: Grant
    Filed: April 7, 2020
    Date of Patent: December 1, 2020
    Assignee: H55 SA
    Inventors: Sébastien Demont, Franco Summermatter, Sébastien Luisier
  • Patent number: 10854867
    Abstract: To suppress heat generation in a short-circuit current shunt part in a stacked battery that includes the short-circuit current shunt part, in the stacked battery 100 including at least one short-circuit current shunt part 10, and a stack 20 that includes a plurality of electric elements 20a, 20b which are stacked, the short-circuit current shunt part 10 includes a first part 10a that is provided on one end side in a stacking direction of the stack 20, a second part 10b that is provided on another end side therein, and a third part 10c that connects the first part 10a and the second part 10b; at the first part 10a, the first current collector layer 11 and the cathode current collector layer 21 have an electric connection part 14a but the second current collector layer 12 and the anode current collector layer 25 do not have any electric connection part, at the second part 10b, the second current collector layer 12 and the anode current collector layer 25 have an electric connection part 14b but the first curren
    Type: Grant
    Filed: April 25, 2019
    Date of Patent: December 1, 2020
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Hajime Hasegawa, Norihiro Ose, Hideaki Nishimura, Yuki Matsushita
  • Patent number: 10854923
    Abstract: Low flammability and nonflammable localized superconcentrated electrolytes (LSEs) for stable operation of lithium and sodium ion batteries are disclosed. Electrochemical devices including the low flammability and nonflammable LSEs are also disclosed. The low flammability and nonflammable LSEs include an active salt, a solvent comprising a flame retardant compound, wherein the active salt is soluble in the solvent, and a diluent in which the active salt is insoluble or poorly soluble. The LSE may further include a cosolvent, such as a carbonate, a sulfone, a sulfite, a sulfate, a carboxylate, an ether, a nitrogen-containing solvent, or any combination thereof. In certain embodiments, such as when the solvent and diluent are immiscible, the LSE further includes a bridge solvent.
    Type: Grant
    Filed: August 31, 2018
    Date of Patent: December 1, 2020
    Assignee: Battelle Memorial Institute
    Inventors: Wu Xu, Shuru Chen, Ji-Guang Zhang, Xia Cao, Haiping Jia, Bin Liu, Xiaodi Ren
  • Patent number: 10854917
    Abstract: An active material layer containing a compound represented by a general formula (1): LiaVbAlcTidPeO12 (1), where a, b, c, d, and e in the general formula (1) are numbers satisfying 0.5?a?3.0, 1.20<b?2.00, 0.01?c<0.06, 0.01?d<0.60, and 2.80?e?3.20; and a solid electrolyte layer containing a compound represented by a general formula (2): LifVgAlhTiiPjO12 (2), where f, g, h, i, and j in general formula (2) are numbers satisfying 0.5?f?3.0, 0.01?g<1.00, 0.09<h?0.30, 1.40<i?2.00, and 2.80?j?3.20.
    Type: Grant
    Filed: September 25, 2017
    Date of Patent: December 1, 2020
    Assignee: TDK CORPORATION
    Inventors: Hiroshi Sato, Masahiro Oishi, Takeo Tsukada, Gakuho Isomichi, Tetsuya Ueno
  • Patent number: 10854865
    Abstract: A busbar assembly includes, among other things, a busbar, a battery terminal, and a deformed area securing together the busbar and the battery terminal. A securing method includes, among other things, positioning a first portion of an attachment structure within an aperture, deforming a second portion of the attachment structure to provide a deformed area, and using the deformed area to secure a busbar relative to a battery terminal.
    Type: Grant
    Filed: December 6, 2018
    Date of Patent: December 1, 2020
    Assignee: Ford Global Technologies, LLC
    Inventors: Yongcai Wang, Yunan Guo, Jingmei Shen, Ahteram Khan
  • Patent number: 10847840
    Abstract: Lithium tetrafluoro(malonato)phosphate compounds are useful as additives in lithium ion battery applications. The compounds are represented by Formula (I): MPF4[—O(C?O)—(CX?X?)—(C?O)O—]; wherein M is Li or Na; each X? and X? independently is selected from the group consisting of H, alkyl, fluoro-substituted alkyl, and F; or wherein the X? and X? together are —CR2—(CR?2)m—CR?2—; each R, R? and R? independently is selected from the group consisting of H, methyl, trifluoromethyl, and F; and m is 0 or 1. These compounds can be prepared in high purity and a high yield by reaction of a metal hexafluorophosphate with a bis-silyl malonate compound. A similar oxalato compound, lithium tetrafluoro(oxalato)phosphate), can be made in the same manner, but using a bis-silyl oxalate in place of the bis-silyl malonate. Advantageously, the compounds can be formed, in situ, in a LiPF6-containing electrolyte solution.
    Type: Grant
    Filed: October 30, 2018
    Date of Patent: November 24, 2020
    Assignee: UCHICAGO ARGONNE, LLC
    Inventors: Chen Liao, Ilya A. Shkrob, Daniel Abraham, Zhengcheng Zhang
  • Patent number: 10840560
    Abstract: An improved high energy density rechargeable (HEDR) battery with an anode energy layer, a cathode energy layer, a separator between the anode and cathode energy layers for preventing internal discharge thereof, and at least one current collector for transferring electrons to and from either the anode or cathode energy layer, includes a resistive layer interposed between the separator and one of the current collectors for limiting the rate of internal discharge through the failed separator in the event of separator failure. The resistive layer has a fixed resistivity at temperatures between a preferred temperature range and an upper temperature safety limit for operating the battery. The resistive layer serves to avoid temperatures in excess of the upper temperature safety limit in the event of separator failure in the battery, and a fixed resistivity of the resistive layer is greater than the internal resistivity of either energy layer.
    Type: Grant
    Filed: June 8, 2018
    Date of Patent: November 17, 2020
    Assignee: American Lithium Energy Corporation
    Inventors: Jiang Fan, Dengguo Wu
  • Patent number: 10833318
    Abstract: In an aspect, an electrode for an electrochemical cell comprises: a structure having a nano- or micro-architected three-dimensional geometry; said structure comprising one or more active carbon allotrope materials; wherein said structure is characterized by an average density less than or equal to 2.3 g cm?3 and an average specific strength (strength-to-density ratio) greater than or equal to 0.004 GPa g?1 cm3. Also disclosed herein are methods for making an electrode for an electrochemical cell, and methods for making an electrochemical cell.
    Type: Grant
    Filed: October 3, 2018
    Date of Patent: November 10, 2020
    Assignee: California Institute of Technology
    Inventors: Julia R. Greer, Andrey Vyatskikh, John S. Thorne, Akira Kudo, Kai Narita, Michael A. Citrin, Xuan Zhang
  • Patent number: 10833379
    Abstract: An electric vehicle system for transporting human passengers or cargo includes an electric vehicle that includes a body, a plurality of wheels, a cargo area, an electric motor for propelling the electric vehicle, and a primary battery for providing electrical power to the electric motor for propelling the electric vehicle. An auxiliary battery module is attachable to the electric vehicle for providing electrical power to the electric motor via a first electrical connector at the auxiliary battery module and a second electrical connector at the electric vehicle that mates with the first electrical connector. The auxiliary battery module can be positioned in the cargo area while supplying power to the electric motor, and can be removable and reattachable from the electric vehicle. The auxiliary battery module includes an integrated cooling system for cooling itself during operation of the electric vehicle including a conduit therein for circulating coolant.
    Type: Grant
    Filed: July 11, 2018
    Date of Patent: November 10, 2020
    Assignee: Rivian IP Holdings, LLC
    Inventors: Robert J. Scaringe, Charles Chang, Henry Huang, Patrick Hunt
  • Patent number: 10826127
    Abstract: A thin film coating with inorganic/organic composite materials for application on a porous separator of a rechargeable metal battery cell is disclosed. The composite material, which is comprised of ion conductive ceramic particles mixed with, or embedded within a matrix of, at least one polymer comprising at least one anionic functional group and at least one metallic cation. The composite coating layer enhances the overall electrochemical performance of rechargeable metal batteries by preventing the formation of metal dendrites on the metallic anode of a metal battery cell.
    Type: Grant
    Filed: September 29, 2018
    Date of Patent: November 3, 2020
    Assignees: International Business Machines Corporation, Korea Research Institute of Chemical Technology
    Inventors: Yongku Kang, Jangwoo Kim, Young-Hye Na