Patents Examined by Serkan Akar
  • Patent number: 11369337
    Abstract: Methods and systems are disclosed for detecting a region of disturbed blood flow within a blood-filled lumen and indicating the region of disturbed blood flow using a disturbed blood flow indicator. The region of disturbed blood flow can be detecting by processing a plurality of data vectors acquired by an imaging device. The plurality of data vectors can also be processed to generate an intravascular image. The intravascular image can be displayed to include the disturbed blood flow indicator at a region on the displayed image corresponding to a detected region of disturbed blood flow.
    Type: Grant
    Filed: December 11, 2015
    Date of Patent: June 28, 2022
    Assignee: ACIST MEDICAL SYSTEMS, INC.
    Inventors: Kendall R. Waters, Thomas C. Moore
  • Patent number: 11350894
    Abstract: A radiation imaging system includes a detector including a plurality of pixels which obtain pixel values corresponding to incident radiation transmitted through a subject, and an information processing unit configured to perform a process of estimating information on thicknesses of substances included in the subject using pixel values of an arbitrary one of the plurality of pixels, an average value of energy of radiation quanta of the arbitrary pixel calculated in accordance with the pixel values of the arbitrary pixel, a first table indicating the relationship between the pixel values of the arbitrary pixel and the thicknesses of the substances included in the subject, and a second table indicating the relationship between the average value of the energy of the radiation quanta of the arbitrary pixel and the thicknesses of the substances included in the subject.
    Type: Grant
    Filed: October 24, 2016
    Date of Patent: June 7, 2022
    Assignee: Canon Kabushiki Kaisha
    Inventors: Yoshihito Machida, Atsushi Iwashita
  • Patent number: 11344278
    Abstract: Disclosed is a computer-implemented method for determining an ovarian follicle count and size (diameter) from a pair of 2-D transvaginal ultrasound scans.
    Type: Grant
    Filed: February 12, 2018
    Date of Patent: May 31, 2022
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Ganesan Ramachandran, Sindhu Priyadarshini Nellur Prakash, Celine Firtion, Cecile Dufour, Stéphane Allaire
  • Patent number: 11337643
    Abstract: Certain aspects relate to apparatuses and techniques for non-invasive and non-contact optical imaging that acquires a plurality of images corresponding to both different times and different frequencies. Additionally, alternatives described herein are used with a variety of tissue classification applications including assessing the presence and severity of tissue conditions, such as necrosis and small vessel disease, at a potential or determined amputation site.
    Type: Grant
    Filed: August 24, 2020
    Date of Patent: May 24, 2022
    Assignee: Spectral MD, Inc.
    Inventors: Wensheng Fan, John Michael DiMaio, Jeffrey Thatcher
  • Patent number: 11331070
    Abstract: A system includes an acoustic probe and an acoustic imaging machine. The acoustic probe includes a substrate with first and second principal surfaces, a device insertion port with an opening passing through the substrate from the first principal surface to the second principal surface, and an array of acoustic transducer elements supported by the substrate and disposed around the device insertion port. The acoustic imaging machine may systematically vary the size and/or position of the active acoustic aperture of the probe by providing transmit signals to selected acoustic transducer elements to cause the array to transmit an acoustic probe signal to an area of interest and may record a feedback signal of the transmit signals from an acoustic receiver provided at a distal end of an interventional device passed through the device insertion port into the area of interest to find an active acoustic aperture having optimal acoustic performance.
    Type: Grant
    Filed: December 21, 2016
    Date of Patent: May 17, 2022
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Ramon Quido Erkamp, Man Nguyen, Jean-Luc Robert, Sheng-Wen Huang, Shyam Bharat, Jochen Kruecker
  • Patent number: 11330980
    Abstract: A Bowman's Refractive Index (BRI) for quantification of microdistortions in Bowman's Layer (BL) after Small Incision Lenticule Extraction (SMILE) is defined for a patient. BRI is summation of one or more areas of the OCT image of anterior edge of Bowman's layer, quantifies the smoothness of the Bowman's layer. The anterior edge of Bowman's layer is segmented into pixels. After segmentation, a 3rd order polynomial is curve fit to the segmented pixels of the edge of Bowman's layer. BRI is calculated by segmentation of the 3-Dimensional (3-D) OCT image. BRI acts as a marker for mechanical stability and is useful for diagnosis of disease and prognosis of treatments in human.
    Type: Grant
    Filed: December 8, 2016
    Date of Patent: May 17, 2022
    Assignee: Narayana Nethralaya Foundation
    Inventors: Abhijit Sinha Roy, Rohit Shetty, Bhujang Shetty
  • Patent number: 11324438
    Abstract: The present technology relates to an information processing apparatus, an information processing method, and a program through which it is possible to intuitively and visually recognize skin conditions. An analysis result acquisition unit acquires a skin condition analysis result based on an epidermis image obtained by capturing skin epidermis. A display control unit displays an analysis result image of a predetermined display form based on a skin condition analysis result on a display unit. Therefore, it is possible to intuitively and visually recognize skin conditions. The present technology can be applied to, for example, an electronic device configured to display a skin analysis result.
    Type: Grant
    Filed: April 8, 2015
    Date of Patent: May 10, 2022
    Assignee: Sony Corporation
    Inventor: Natsuki Kimura
  • Patent number: 11317851
    Abstract: To appropriately evaluate skin spots by grasping a quality (characteristic) of the skin spots. A skin spot evaluation apparatus includes an area extracting unit that extracts skin spot areas corresponding to skin spots from a skin image obtained by photographing a skin of a subject; and an evaluation unit that analyzes, based on the skin spot areas extracted by the area extracting unit, at least one of the number of the skin spots, dimension of each of the skin spots and density of each of the skin spots, and generates data obtained by quantifying characteristic of the skin spots of the skin image using the analyzed result.
    Type: Grant
    Filed: November 11, 2015
    Date of Patent: May 3, 2022
    Assignee: SHISEIDO COMPANY, LTD.
    Inventors: Kumiko Kikuchi, Yuji Masuda, Tetsuji Hirao
  • Patent number: 11317807
    Abstract: An optical measurement system and method are provided. Pump sample light and probe sample light are delivered through into an anatomical structure of a user. The anatomical structure has molecules having a resonant vibrational frequency equal to the difference between a first optical frequency of the pump sample light and a second optical frequency of the probe sample light, whereby a portion of the probe sample light is inelastically scattered by the molecules as signal light encoded with a physiological event occurring in the molecules, and whereby sample light comprising the signal light exits the anatomical structure. Signal light in the exiting sample light is detected, and an electrical signal representative of the signal light is outputted. The electrical signal is analyzed, and based on this analysis, the presence and the depth of the physiological event in the anatomical structure is determined.
    Type: Grant
    Filed: September 9, 2019
    Date of Patent: May 3, 2022
    Assignee: HI LLC
    Inventor: Hooman Mohseni
  • Patent number: 11304654
    Abstract: An abnormal respiration detection apparatus includes a sensor for sensing a PPG signal from an optical signal reflected and received from a user's body; a band pass filter for extracting a signal of a required band from the PPG signal; an analog-to-digital converter for performing a digital conversion on the filtered PPG signal; and an abnormal respiration recognition unit deriving a respiration rate signal from the digital-converted PPG signal, deriving a plurality of respiration rate characteristic values through a time axis analysis on the derived respiration rate signal, and detecting an abnormal respiration using the derived plurality of respiration rate characteristic values. The embodiments can be utilized to monitor the survival of elders who live alone, soldiers isolated in a military operation, persons isolated in disaster and accident sites, thereby contributing to public and social safety and building of welfare society and nation.
    Type: Grant
    Filed: September 6, 2017
    Date of Patent: April 19, 2022
    Assignee: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventors: Hyun Soon Shin, Chan Young Hahm
  • Patent number: 11291371
    Abstract: A device to measure with infrared radiation, then make a projection picture of, blood concentration inside the body of animals. Blood concentration in cancer masses increases, when compared to adjoining tissues, as flesh and bones, also with a disorganized capillary distribution. The device disclosed in this invention makes two types of images, a first image, which we call transmitted image, with infrared radiation that suffered no scattering as it propagates through the body or part of the body, and a second image, which we call scattered image, with radiation that suffered one or more scattering events, as it propagates through the body. Finally, a third image can be made from a combination of the first and second image after a suitable mathematical manipulation of the first and/or second images. Each of the three images may be used as an indication of cancer.
    Type: Grant
    Filed: July 16, 2020
    Date of Patent: April 5, 2022
    Inventors: Gunnar Erik Skulason, Sergio Lara Pereira Monteiro
  • Patent number: 11291508
    Abstract: Systems and methods that use computer vision techniques in connection with robotic surgery are discussed. A robotic surgery system may include an implantable device engagement sub-system, a targeting sub-system, and/or an insertion verification sub-system. The system may use computer vision techniques to facilitate implanting a micro-manufactured bio-compatible electrode device in biological tissue (e.g., neurological tissue such as the brain) using robotic assemblies. The system can attach, via robotic manipulation, the electrode to an engagement element of an insertion needle.
    Type: Grant
    Filed: September 12, 2019
    Date of Patent: April 5, 2022
    Assignee: NEURALINK, CORP.
    Inventors: Ian M. O'Hara, Vikash Gilja, Kenny Sharma, Timothy L. Hanson, Timothy J. Gardner
  • Patent number: 11284800
    Abstract: A portable, handheld device for fluorescence-based imaging is provided. The device comprises a wireless communication device having a sensor configured to detect optical signals. The device further comprises an assembly configured to receive and secure the wireless communication device therein. The assembly includes a housing, at least one light source coupled to the housing, a power supply, and an optical filter holder coupled to the housing and configured to receive one or more optical filters. An endoscope portion of the device is positioned relative to the sensor to visualize at least a portion of a confined anatomical space and to receive optical signals from a visualized, illuminated portion of a target positioned within the confined anatomical space. A processor of the device includes image analysis software and is configured to produce a composite representation of the illuminated portion of the target positioned within the confined anatomical space.
    Type: Grant
    Filed: April 27, 2018
    Date of Patent: March 29, 2022
    Assignee: UNIVERSITY HEALTH NETWORK
    Inventors: Ralph Dacosta, Brian C. Wilson, Kai Zhang
  • Patent number: 11272984
    Abstract: Systems and methods are provided in which devices that are employed during a medical procedure are adaptively configured during the medical procedure, based on input or feedback that is associated with the current state, phase or context of the medical procedure. In some example embodiments, the input is obtained via the identification of one or more medical instruments present within a region of interest, and this input may be employed to determine configuration parameters for configuring the device. In other example embodiments, the input may be based on the image-based detection of a measure associated with the phase or context of the medical procedure, and this input may be employed to adaptively control the device based on the inferred context or phase of the medical procedure. In other embodiments, images from one imaging modality may be employed to adaptively switch to another imaging modality.
    Type: Grant
    Filed: July 7, 2017
    Date of Patent: March 15, 2022
    Assignee: SYNAPTIVE MEDICAL INC.
    Inventors: Cameron Piron, Michael Wood, Gal Sela, Joshua Richmond, Murugathas Yuwaraj, Stephen McFadyen, Alex Panther, Nishanthan Shanmugaratnam, William Lau, Monroe M. Thomas, Wes Hodges, Simon Alexander, David Gallop
  • Patent number: 11266481
    Abstract: Tissue localization devices and methods of localizing tissue using tissue localization devices are disclosed. The tissue localization device can comprise a handle comprising a delivery control, a delivery needle extending out from the handle, and a localization element within the delivery needle. The localization element can be deployed out of the delivery needle or retracted back into the delivery needle when the delivery control is translated in a first direction or a second direction, respectively. The localization element can be coupled to a flexible tracking wire.
    Type: Grant
    Filed: October 12, 2018
    Date of Patent: March 8, 2022
    Assignee: HOLOGIC, INC.
    Inventors: George D. Hermann, Jonathan M. Olson, Gail S. Lebovic, Charles Grove
  • Patent number: 11266350
    Abstract: An adhesive patch for attaching at least one EM probe to a subject's body, the adhesive patch comprising a planar member having at least one layer of radiation absorbing material and having at least one opening formed within the radiation absorbing material to allow the propagation of EM radiation via the opening from one side of the planar member to the other. The adhesive patch further comprises at least one layer of an adhesive attached over at least part of a bottom surface of the planar member, which adhesive layer may be applied so as to form a pattern on the bottom surface, the pattern comprising at least one adhesive-covered portion and at least one adhesive-free portion.
    Type: Grant
    Filed: May 2, 2013
    Date of Patent: March 8, 2022
    Assignee: Sensible Medical Innovations Ltd.
    Inventors: Amir Saroka, Shlomi Bergida
  • Patent number: 11259776
    Abstract: An ultrasound endoscope includes: an ultrasound transducer; a balloon groove in which a balloon band is fitted; a contact portion that constitutes a bottom surface of the balloon groove; a first wall portion that constitutes a proximal end side of the balloon groove and in which a first distance that is a distance from a center of a cross section orthogonal to an extension direction of the insertion portion to an outer circumference of the first wall portion is larger than a second distance that is a distance from the center of the cross section to the bottom surface; and a second wall portion that constitutes a distal end side of the balloon groove, in which a distance from the center of the cross section to an outer circumference of the second wall portion is larger than the second distance, and that includes a notch portion.
    Type: Grant
    Filed: August 30, 2018
    Date of Patent: March 1, 2022
    Assignee: OLYMPUS CORPORATION
    Inventor: Teppei Tsuruta
  • Patent number: 11253223
    Abstract: A method of non-invasively monitoring the respiration of a patient comprises: transmitting ultrasound into the body toward an internal structure of the patient's body, the internal structure being one of the liver, the spleen or a kidney; selecting a depth range; measuring the phase of ultrasound echo signals from the internal structure at multiple points along the depth range for at least a first and a second echo signal, the first and second echo signals being received at different times; detecting the motion of the internal structure within the patient's abdomen by reference to differences in the measured phase between the first and the second echo signals; and thereby monitoring the respiration of the patient by associating movement of the internal structure with movement caused by respiration.
    Type: Grant
    Filed: May 11, 2018
    Date of Patent: February 22, 2022
    Assignee: Respinor AS
    Inventors: Nicolas Souzy, Morten Eriksen, Nicolay Berard-Andersen
  • Patent number: 11253205
    Abstract: A biological analysis device includes: a pulse pressure calculation unit that calculates a pulse pressure index related to a pulse pressure of a biological body; an average blood pressure calculation unit that calculates an average blood pressure index related to an average blood pressure of the biological body; and a blood pressure calculation unit that calculates a systolic blood pressure and a diastolic blood pressure in accordance with the pulse pressure index and the average blood pressure index. At least one of the pulse pressure index and the average blood pressure index is calculated in accordance with a blood flow index which is calculated from an intensity spectrum related to a frequency of light reflected and received from an inside of the biological body through radiation of a laser beam and is related to a blood flow of the biological body.
    Type: Grant
    Filed: August 16, 2018
    Date of Patent: February 22, 2022
    Assignee: SEIKO EPSON CORPORATION
    Inventors: Megumi Enari, Ayae Sawado, Kohei Yamada, Akiko Yamada, Akira Ikeda, Masayasu Fukuoka, Akira Kitahara
  • Patent number: 11255965
    Abstract: Fresnel elevation focusing at a selected elevation angle is performed by transmitting a sequential set of Fresnel-focused ultrasound pulses, where a different Fresnel phase pattern is used for each pulse, and where the receive signals are coherently compounded. The different Fresnel patterns cause the secondary lobe energy to be reduced via averaging of variations of the pressure fields in the secondary lobe regions. In some embodiments, the method of coherently compounded Fresnel focusing is combined with coherently compounded defocused wave (e.g. plane wave or diverging wave) imaging in the azimuth direction. Each of the elevation slices are collected by changing the Fresnel patterns respectively employed when the sequence of plane waves or diverging waves are transmitted, such that the coherent compounding can benefit both planes simultaneously. Hadamard receive encoding and subsequent dynamic receive beamforming may be employed to further improve performance in the elevation direction.
    Type: Grant
    Filed: December 15, 2017
    Date of Patent: February 22, 2022
    Assignee: DALHOUSIE UNIVERSITY
    Inventors: Jeremy Brown, Christopher Samson, Katherine Latham