Patents Examined by Shahdeep Mohammed
  • Patent number: 10206661
    Abstract: Embodiments provided herein generally relate to improved ultrasound visualization. In some embodiments, interoperative ultrasound displays may be enhanced for more accurate identification of cancerous and non-cancerous tissues.
    Type: Grant
    Filed: September 7, 2012
    Date of Patent: February 19, 2019
    Assignee: Empire Technology Development LLC
    Inventor: Richard J. Mammone
  • Patent number: 10165951
    Abstract: A method for measuring and determining a pulse arrival time (PAT) value of a user using a sensor device having a photoplethysmographic (PPG) multichannel sensor formed from a plurality of PPG sensor channels and being adapted to measure a set of PPG signals, each PPG signal being measured by one of the PPG sensor channels when the multichannel PPG sensor is in contact with the user; having: measuring the set of PPG signals; extracting a plurality of features from each of the measured PPG signals; selecting a subset from the set of PPG signals based on the extracted features; and processing the selected subset of PPG signals to determine the PAT value. The disclosed sensor and method can be embedded into a chest belt and do not need skilled supervision. They can represent a potential candidate for the implantation of PWV measurement campaigns in the ambulatory setting.
    Type: Grant
    Filed: September 28, 2012
    Date of Patent: January 1, 2019
    Assignee: CSEM CENTRE SUISSE D'ELECTRONIQUE ET DE MICROTECHNIQUE SA—RECHERCHE ET DÉVELOPPEMENT
    Inventors: Josep Sola i Caros, Stefano Rimoldi
  • Patent number: 10123765
    Abstract: The present embodiment relates to an ultrasound probe having a first ultrasound vibrator group and a second ultrasound vibrator group, comprising a plurality of matrix switches and an adder. The ultrasound probe has a mode to send ultrasound to a predetermined observation point within a subject by the first ultrasound vibrator group, and to receive ultrasound echoes reflected within the subject by the second ultrasound vibrator group. The plurality of matrix switches extract, based on the distance between the second ultrasound vibrator group and the observation point, a plurality of ultrasound echoes having substantially the same phase from a plurality of ultrasound echoes output by the second ultrasound vibrator group. The adder adds the plurality of ultrasound echoes extracted by the plurality of matrix switches for each of the matrix switches and outputs them.
    Type: Grant
    Filed: December 23, 2010
    Date of Patent: November 13, 2018
    Assignee: TOSHIBA MEDICAL SYSTEMS CORPORATION
    Inventors: Hironobu Hongou, Toru Hirano, Isao Uchiumi, Masaaki Ishitsuka, Takayuki Shiina
  • Patent number: 10124114
    Abstract: A method for identifying target regions in a tissue for local drug delivery, where functional and/or structural anatomical data such as edema and/or resection cavity is captured by an imaging system, and where the anatomical data is evaluated by segmentation techniques such as region-growing-based methods with computer assistance to determine a margin around a resection cavity and/or the volume of edema, the margin and/or the volume of edema being the target tissue for local drug delivery.
    Type: Grant
    Filed: April 14, 2009
    Date of Patent: November 13, 2018
    Assignee: Brainlab AG
    Inventors: Raghu Raghavan, Martin Brady, Maria Inmaculada Rodriguez-Ponce
  • Patent number: 10092188
    Abstract: The invention provides methods and compositions for determining whether a subject containing a stent immobilized in a blood vessel has asymptomatic stent thrombosis or is at risk of developing clinically symptomatic stent thrombosis. In one approach, the method involves imaging a region of the blood vessel that contains the stent using a probe that contains a fluorochrome, for example, a near-infrared fluorochrome, and a targeting moiety that binds a molecular marker indicative of the presence of asymptomatic stent thrombosis or the development of symptomatic stent thrombosis. To the extent that the subject displays one or more such markers, the probe binds to the markers and increases the local concentration of the probe in the vicinity of the stent. The imaging method identifies those patients that display a higher density of such markers in the vicinity of the stent. As a result, those patients can be monitored for, and/or treated to prevent, symptomatic stent thrombosis.
    Type: Grant
    Filed: September 30, 2014
    Date of Patent: October 9, 2018
    Assignee: VisEn Medical, Inc.
    Inventors: Farouc Jaffer, Milind Rajopadhye
  • Patent number: 10076299
    Abstract: Systems and methods for determining an objective metric for analyzing health of a patient's liver are described. In some embodiments, the system may include a scanner that can detect radiation counts responsive to administration of radioactive compound to a patient. Further, the system may include an image detection module that can access image data responsive to the detected radiation counts by the scanner. The image detection module can programmatically identify a first region of interest corresponding to a liver of the patient from the image data. A parameter calculator module can programmatically determine a first attribute associated with the first region of interest and calculate a first parameter indicating health of the liver of the patient based at least in part on the first attribute associated with the first region of interest.
    Type: Grant
    Filed: October 9, 2015
    Date of Patent: September 18, 2018
    Assignee: HEPATIQ, INC.
    Inventors: Dipankar Ghosh, John Carl Hoefs
  • Patent number: 10022569
    Abstract: A driving device includes an output voltage decomposing unit which decomposes an output voltage applied to an ultrasonic transducer into a basic and harmonic components; an output current decomposing unit which decomposes an output current flowing through the ultrasonic transducer into a basic and harmonic components; a capacitor current calculator which calculates a basic and harmonic components of a capacitor current, based on the basic and harmonic components of the output voltage; a driving current calculator which calculates a basic and harmonic components of a driving current based on the basic and harmonic components of the output current and the capacitor current, a driving current summing unit which sums up the basic and harmonic components of the driving current, and a constant current controller which generates constant current control data.
    Type: Grant
    Filed: November 25, 2016
    Date of Patent: July 17, 2018
    Assignee: OLYMPUS CORPORATION
    Inventors: Shunsuke Matsui, Ko Kawashima
  • Patent number: 10016146
    Abstract: An MPI method determines calibration and measurement volumes, wherein the calibration volume is larger than the measurement volume and the overall measurement volume is arranged within the calibration volume. Calibration signals are detected and a system matrix S is created. An MPI measuring signal u is recorded, a location-dependent magnetic particle concentration c with magnetic particle concentration values ci within the calibration volume is reconstructed and the magnetic particle concentration values ci are associated with voxels in the calibration volume. Magnetic particle concentration values ci which were associated with voxels outside of the measurement volume are discarded and an MPI image is generated which exclusively contains magnetic particle concentration values ci which were associated with the voxels within the measurement volume. MPI image data are thereby generated with little artifacts within a short time even in case of high magnetic particle densities outside of the measurement volume.
    Type: Grant
    Filed: July 13, 2016
    Date of Patent: July 10, 2018
    Assignee: Bruker BioSpin MRI GmbH
    Inventor: Alexander Weber
  • Patent number: 9987096
    Abstract: A method and apparatus for radially compressing bodily tissue and performing medical procedures from a selected one of a plurality of circumferential positions and angles, a selected one of a plurality of different elevations and elevational angles. Some embodiments include a tissue-compression fixture having members that are configured to be moved to radially compress bodily tissue such that each of a plurality of areas of biological tissue are exposed between the plurality of members, and wherein the fixture is compatible with use in an MRI machine in operation; an actuator having a receiver for a medical-procedure probe; and a computer system operatively coupled to the actuator to move the probe. The computer receives user commands, and based on the commands, moves the actuator to a selected one of a plurality of different positions around the tissue-compression fixture and then extends the probe into the patient.
    Type: Grant
    Filed: January 31, 2017
    Date of Patent: June 5, 2018
    Assignee: MRI Robotics LLC
    Inventors: Blake Timothy Larson, Arthur Guy Erdman
  • Patent number: 9955947
    Abstract: A device and method for shielding an ultrasound probe are provided. The ultrasound probe includes a handle having an interior chamber with an open front end and a transducer assembly provided in the chamber. The transducer assembly converts acoustic energy received through the open front end to electrical signals. The ultrasound probe further includes a shielding portion provided between the transducer assembly and an exterior of the handle.
    Type: Grant
    Filed: July 15, 2005
    Date of Patent: May 1, 2018
    Assignee: General Electric Company
    Inventors: Atsushi Morimoto, Scott Kerwin
  • Patent number: 9943667
    Abstract: A guide wire includes an elongated main body possessing flexibility. The main boy is comprised of a first wire having a core member constituted by a metal material, a second wire having a core member arranged on the proximal side of the first wire and constituted by a metal material, and an optically transmissive member arranged between the first wire and the second wire, and connecting the first and second wires to each other and constituted by a substantially transparent tube shaped body. The optically transmissive member exhibits light permeability such that when light is illuminated from one direction of a lateral side thereof, the light is transmissible to the opposite side through the center axis of the main body.
    Type: Grant
    Filed: August 27, 2012
    Date of Patent: April 17, 2018
    Assignee: TERUMO KABUSHIKI KAISHA
    Inventor: Tomoji Maruyama
  • Patent number: 9931523
    Abstract: An apparatus for driving and controlling ultrasonic elements includes a computer-based host unit that determines driving characteristics with which to drive the ultrasonic elements; a microprocessor-based controller that receives an output from the host and provides signals representing a frequency and/or an amplitude characteristic; a frequency control circuit receiving the frequency characteristic signal; an amplitude control circuit receiving the amplitude characteristic signal; an RF amplifier acting on an output from the frequency and/or the amplitude control circuits to provide an amplified output signal corresponding to the frequency and/or amplitude characteristic; a coupling circuit that couples the amplified output signal to the ultrasonic elements and provides a forward output signal to a first RF detector circuit and a reverse output signal to a second RF detector circuit; and an analog-to-digital converter that receives an output of the RF detector circuits and provides a corresponding converted
    Type: Grant
    Filed: March 9, 2011
    Date of Patent: April 3, 2018
    Assignee: Profound Medical, Inc.
    Inventors: Cameron Mahon, Nicolas Yak, Rajiv Chopra, Mathew Asselin, Michael Bronskill
  • Patent number: 9877698
    Abstract: According to one embodiment, there is provided an ultrasonic diagnosis apparatus which generates a plurality of volume data over a predetermined period, executes setting of a position of at least one MPR slice relative to volume data, of the plurality of volume data, which corresponds to a first time phase, and sets positions of MPR slices corresponding to the at least one set MPR slice with respect to remaining volume data, executes segmentations of at least part of the heart into a plurality of segments, executes three-dimensional tracking processing, and optimizes the position of the MPR slice which is set in a predetermined time phase, based on the positions of the plurality of segments, and optimizes positions of the MPR slices set for the remaining volume data in association with the optimization.
    Type: Grant
    Filed: December 28, 2010
    Date of Patent: January 30, 2018
    Assignee: Toshiba Medical Systems Corporation
    Inventor: Shinichi Hashimoto
  • Patent number: 9867674
    Abstract: A method and apparatus for identifying a member used in a navigation system. The navigation system can determine the identification of an instrument via an input. The input can be substantially automatic when an instrument is introduced into the navigation system field or assembly.
    Type: Grant
    Filed: July 27, 2012
    Date of Patent: January 16, 2018
    Assignee: Medtronic Navigation, Inc.
    Inventors: Steve Hartmann, Jason Tipton
  • Patent number: 9844405
    Abstract: Described is an apparatus for locally monitoring nerve activity that may be incorporated into a nerve ablation catheter. Such a catheter is equipped with magnetic sensing for both identifying nerves and assessing the success of the ablation. The catheter is also equipped with an ablation instrument for both stimulating and destroying nerve tissue.
    Type: Grant
    Filed: December 19, 2012
    Date of Patent: December 19, 2017
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Jan Weber, Torsten Scheuermann, Roger Hastings
  • Patent number: 9839408
    Abstract: Minimally invasive systems and methods are described for measuring pulmonary circulation information from the pulmonary arteries. A transbronchial Doppler ultrasound catheter is advanced through the airways and in the vicinity of the pulmonary artery. Doppler ultrasound energy is sent through the airway wall and across the pulmonary artery to obtain velocity information of blood flowing through the artery. The velocity information is used to compute pulmonary circulation information including but not limited to flowrate.
    Type: Grant
    Filed: August 10, 2012
    Date of Patent: December 12, 2017
    Assignee: PneumRx, Inc.
    Inventors: Edmund J. Roschak, Jeffrey Schwardt, Philip Stephen Levin
  • Patent number: 9823189
    Abstract: In an embodiment of the present disclosure, an optical method for determining morphological parameters and physiological properties of tissue is presented. The method includes using reflectance measurements from a tissue area for a plurality of wavelengths, using a bio-optical model, using radiative transfer modeling and using a non-linear inversion procedure.
    Type: Grant
    Filed: March 18, 2009
    Date of Patent: November 21, 2017
    Assignee: Balter, AS.
    Inventors: Jakob J. Stamnes, Knut Stamnes, Lu Zhao, Boerge Hamre, Gennady Ryzhikov, Marina Biryulina, Endre R. Sommersten, Kristian Pagh Nielsen, Johan E. Moan
  • Patent number: 9808174
    Abstract: Upon detecting a body-motion before starting a main-imaging, a sequence-switching control-unit controls operation so as to switch from a usual-imaging sequence to a body-motion adaptive-sequence corresponding to an imaging-portion of a subject P by referring to a body-motion adaptive-sequence storage-unit. Moreover, upon detecting a body-motion during the main-imaging according to the usual-imaging sequence, the sequence-switching control-unit refers to a collected-data storage-unit, and controls operation so as to perform a retake by switching to the body-motion adaptive-sequence if an already-collected data-volume is less than a predetermined volume. By contrast, if the already-collected data-volume is equal to or more than the predetermined volume at a time of detecting a body-motion during the main-imaging, the sequence-switching control-unit stops the main-imaging, and controls a data-processing unit so as to reconstruct a magnetic resonance image only with collected data.
    Type: Grant
    Filed: December 2, 2009
    Date of Patent: November 7, 2017
    Assignee: Toshiba Medical Systems Corporation
    Inventor: Katsutoshi Kokubun
  • Patent number: 9808653
    Abstract: Methods for treating a human patient having a subarachnoid hematoma, such as to prevent cerebral vasospasm or to reduce the severity of cerebral vasospasm in the patient, and associated devices, systems, and methods are disclosed herein. In a particular embodiment, a thrombolytic agent is introduced extravascularly into a subarachnoid region including the hematoma. A headset configured for hands-free delivery of transcranial ultrasound energy is connected to the patient and used to deliver ultrasound energy to the subarachnoid region to enhance the thrombolytic effect of the thrombolytic agent. The type and/or dosage of the thrombolytic agent can be selected based on the enhanced thrombolytic effect. For example, the enhanced thrombolytic effect can allow the therapeutically effective use of less aggressive thrombolytic agents and/or lower dosages of thrombolytic agents. In some cases, this can reduce the clinical probability of additional cerebral hemorrhage.
    Type: Grant
    Filed: May 24, 2013
    Date of Patent: November 7, 2017
    Inventor: David W. Newell
  • Patent number: 9804237
    Abstract: A body coil for magnetic resonance imaging includes one or more coil elements incorporated in a shell material. The body coil has a rectangular basic shape. Two opposing edge sections of the body coil may be pivoted along one pivot axis, respectively, relative to a middle section. For this purpose, movement elements that effect pivoting are arranged on an edge section side.
    Type: Grant
    Filed: February 10, 2013
    Date of Patent: October 31, 2017
    Assignee: Siemens Aktiengesellschaft
    Inventor: Daniel Driemel