Patents Examined by Siangluai Mang
  • Patent number: 11985906
    Abstract: A magnetic tunnel junction (MTJ) memory cell and a metallic etch mask portion are formed over a substrate. At least one dielectric etch stop layer is deposited over the metallic etch mask portion, and a via-level dielectric layer is deposited over the at least one dielectric etch stop layer. A via cavity may be etched through the via-level dielectric layer, and a top surface of the at least one dielectric etch stop layer is physically exposed. The via cavity may be vertically extended by removing portions of the at least one dielectric etch stop layer and the metallic etch mask portion. A contact via structure is formed directly on a top surface of the top electrode in the via cavity to provide a low-resistance contact to the top electrode.
    Type: Grant
    Filed: March 12, 2021
    Date of Patent: May 14, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Yu-Feng Yin, Tai-Yen Peng, An-Shen Chang, Han-Ting Tsai, Qiang Fu, Chung-Te Lin
  • Patent number: 11985825
    Abstract: A memory array device includes a stack of transistors over a semiconductor substrate, a first transistor of the stack being disposed over a second transistor of the stack. The first transistor includes a first memory film along a first word line and a first channel region along a source line and a bit line, the first memory film being disposed between the first channel region and the first word line. The second transistor includes a second memory film along a second word line and a second channel region along the source line and the bit line, the second memory film being disposed between the second channel region and the second word line. The memory array device includes a first via electrically connected to the first word line and a second via electrically connected to the second word line, the second staircase via and the first staircase via having different widths.
    Type: Grant
    Filed: April 15, 2021
    Date of Patent: May 14, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Meng-Han Lin, Feng-Cheng Yang, Sheng-Chen Wang, Sai-Hooi Yeong, Yu-Ming Lin, Han-Jong Chia
  • Patent number: 11963362
    Abstract: A semiconductor device includes a peripheral circuit structure including a first substrate and circuit elements on the first substrate; and a memory cell structure including a second substrate on the first substrate, a first horizontal conductive layer on the second substrate, a second horizontal conductive layer on the first horizontal conductive layer, gate electrodes spaced apart from each other and stacked on the second horizontal conductive layer, channel structures penetrating through the gate electrodes, and separation regions penetrating the gate electrodes, extending, and spaced apart from each other.
    Type: Grant
    Filed: March 16, 2021
    Date of Patent: April 16, 2024
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Seonghun Jeong, Byoungil Lee, Bosuk Kang, Joonhee Lee
  • Patent number: 11957061
    Abstract: A semiconductor device includes a substrate, a first dielectric layer, a second dielectric layer, and a third dielectric layer. The first dielectric layer is disposed on the substrate, around a first metal interconnection. The second dielectric layer is disposed on the first dielectric layer, around a via and a second metal interconnection. The second metal interconnection directly contacts the first metal interconnection. The third dielectric layer is disposed on the second dielectric layer, around a first magnetic tunneling junction (MTJ) structure and a third metal interconnection. The third metal interconnection directly contacts top surfaces of the first MTJ structure and the second metal interconnection, and the first MTJ structure directly contacts the via.
    Type: Grant
    Filed: May 23, 2023
    Date of Patent: April 9, 2024
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Hui-Lin Wang, Po-Kai Hsu, Ju-Chun Fan, Yi-Yu Lin, Ching-Hua Hsu, Hung-Yueh Chen
  • Patent number: 11937514
    Abstract: A semiconductor structure forms two or more tightly pitched memory devices using a dielectric material for a gap fill material. The approach includes providing two adjacent bottom electrodes in a layer of an insulating material and above a metal layer. Two adjacent pillars are each above one of the two adjacent bottom electrodes where each pillar of the two adjacent pillars is composed of a stack of materials for a memory device. A spacer is around the vertical sides each of the two adjacent pillars. The dielectric material is on the spacer around the vertical sides each of the two adjacent pillars, on the layer of the insulating material between the two adjacent bottom electrodes. The dielectric material fills at least a first portion of a gap between the two adjacent pillars. A low k material covers the dielectric material and exposed portions of the layer of the insulating material.
    Type: Grant
    Filed: May 6, 2021
    Date of Patent: March 19, 2024
    Assignee: International Business Machines Corporation
    Inventors: Theodorus E. Standaert, Daniel Charles Edelstein, Chih-Chao Yang
  • Patent number: 11929381
    Abstract: An image sensor including: a substrate which includes a first surface and a second surface opposite each other; a plurality of pixels, each pixel including a photoelectric conversion layer in the substrate; a pixel separation pattern disposed in the substrate and separating the pixels; a surface insulating layer disposed on the first surface of the substrate; conductor contacts disposed in the surface insulating layer; and a grid pattern disposed on the surface insulating layer, wherein the pixel separation pattern includes a first portion and a second portion arranged in a direction parallel to the first surface of the substrate, and the conductor contacts are interposed between the first portion of the pixel separation pattern and the grid pattern and are not interposed between the second portion of the pixel separation pattern and the grid pattern.
    Type: Grant
    Filed: December 30, 2020
    Date of Patent: March 12, 2024
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Han Seok Kim, Byung Jun Park, Jin Ju Jeon, Hee Geun Jeong
  • Patent number: 11923205
    Abstract: A method for manufacturing a semiconductor device includes: providing a wafer-bonding stack structure having a sidewall layer and an exposed first component layer; forming a photoresist layer on the first component layer; performing an edge trimming process to at least remove the sidewall layer; and removing the photoresist layer. In this way, contaminant particles generated from the blade during the edge trimming process may fall on the photoresist layer but not fall on the first component layer, so as to protect the first component layer from being contaminated.
    Type: Grant
    Filed: December 17, 2021
    Date of Patent: March 5, 2024
    Assignee: UNITED MICROELECTRONICS CORPORATION
    Inventors: Kun-Ju Li, Ang Chan, Hsin-Jung Liu, Wei-Xin Gao, Jhih-Yuan Chen, Chun-Han Chen, Zong-Sian Wu, Chau-Chung Hou, I-Ming Lai, Fu-Shou Tsai
  • Patent number: 11910610
    Abstract: A semiconductor device includes a substrate, a gate insulating layer on the substrate, and a stacked semiconductor layer. The stacked semiconductor layer includes a first layer formed on the gate insulating layer and including a phosphorus-doped polycrystalline semiconductor, a second layer formed on the first layer and including a carbon-doped polycrystalline semiconductor, and a third layer formed on the second layer and including a phosphorus-doped or undoped polycrystalline semiconductor. The semiconductor device further includes a metal layer on or above the stacked semiconductor layer. The third layer includes less phosphorus than the first layer or does not include phosphorus.
    Type: Grant
    Filed: March 3, 2021
    Date of Patent: February 20, 2024
    Assignee: Kioxia Corporation
    Inventors: Tatsuya Hosoda, Yasuhisa Naruta
  • Patent number: 11901266
    Abstract: A method for forming a semiconductor device structure is provided. The method includes providing a chip structure including a substrate and a wiring structure over a first surface of the substrate. The method includes removing a first portion of the wiring structure adjacent to the hole to widen a second portion of the hole in the wiring structure. The second portion has a first width increasing in a first direction away from the substrate. The method includes forming a first seed layer over the wiring structure and in the hole. The method includes thinning the substrate from a second surface of the substrate until the first seed layer in the hole is exposed. The method includes forming a second seed layer over the second surface of the substrate and the first seed layer in the hole.
    Type: Grant
    Filed: August 30, 2021
    Date of Patent: February 13, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ting-Li Yang, Wen-Hsiung Lu, Lung-Kai Mao, Fu-Wei Liu, Mirng-Ji Lii
  • Patent number: 11888050
    Abstract: Embodiments of the disclosure provide a lateral bipolar transistor structure with inner and outer spacers, and related methods. A lateral bipolar transistor structure may have an emitter/collector (E/C) layer over an insulator. The E/C layer has a first doping type. A first base layer is on the insulator and adjacent the E/C layer. The first base layer has a second doping type opposite the first doping type. A second base layer is on the first base layer and having the second doping type. A dopant concentration of the second base layer is greater than a dopant concentration of the first base layer. An inner spacer is on the E/C layer and adjacent the second base layer. An outer spacer is on the E/C layer and adjacent the inner spacer.
    Type: Grant
    Filed: December 2, 2021
    Date of Patent: January 30, 2024
    Assignee: GlobalFoundries U.S. Inc.
    Inventors: John L. Lemon, Alexander M. Derrickson, Haiting Wang, Judson R. Holt
  • Patent number: 11888035
    Abstract: The silicon carbide semiconductor device includes: a silicon carbide layer; a silicon dioxide layer provided above the silicon carbide layer and containing nitrogen; and a transition region arranged between the silicon carbide layer and the silicon dioxide layer, and containing carbon, oxygen, and nitrogen, wherein the maximum nitrogen concentration in the transition region is 1.0×1020 cm?3 or higher. The maximum nitrogen concentration in the transition region is five or more times higher than the maximum nitrogen concentration in the silicon dioxide layer.
    Type: Grant
    Filed: July 27, 2021
    Date of Patent: January 30, 2024
    Assignee: FUJI ELECTRIC CO., LTD.
    Inventors: Yasuyuki Kawada, Aki Takigawa
  • Patent number: 11889690
    Abstract: According to one embodiment, a semiconductor storage device includes a stacked structure in which a plurality of conductive layers is stacked in a stacking direction via an insulating layer, a plurality of pillars extending in the stacking direction in the stacked structure and including a memory cell formed at an intersection between at least a part of the plurality of conductive layers and at least a part of the plurality of pillars, a plurality of first contacts arranged in the stacked structure, each of the first contacts reaching a different depth in the stacked structure and being connected to a conductive layer in a different layer among the plurality of conductive layers, and a plurality of second contacts arranged in the stacked structure separately from the plurality of first contacts, each of the second contacts being connected to a conductive layer identical to the conductive layer to which corresponding one of the plurality of first contacts is connected.
    Type: Grant
    Filed: March 11, 2021
    Date of Patent: January 30, 2024
    Assignee: Kioxia Corporation
    Inventor: Kenji Watanabe
  • Patent number: 11881396
    Abstract: A deposition method of forming silicon oxide films collectively on a plurality of substrates in a processing container performs a plurality of execution cycles each of which includes: supplying a silicon material gas containing an organoamino-functionalized oligosiloxane compound into the processing container; and supplying an oxidizing gas into the processing container adjusted to a pressure of 1 Torr to 10 Torr (133 Pa to 1333 Pa).
    Type: Grant
    Filed: February 25, 2021
    Date of Patent: January 23, 2024
    Assignee: Tokyo Electron Limited
    Inventors: Koji Sasaki, Keisuke Suzuki, Tomoya Hasegawa
  • Patent number: 11869964
    Abstract: A transistor device includes a semiconductor epitaxial layer structure including a channel layer and a barrier layer on the channel layer, wherein the barrier layer has a higher bandgap than the channel layer. A modified access region is provided at an upper surface of the barrier layer opposite the channel layer. The modified access region includes a material having a lower surface barrier height than the barrier layer. A source contact and a drain contact are formed on the barrier layer, and a gate contact is formed between source contact and the drain contact.
    Type: Grant
    Filed: May 20, 2021
    Date of Patent: January 9, 2024
    Assignee: Wolfspeed, Inc.
    Inventors: Kyoung-Keun Lee, Fabian Radulescu, Scott Sheppard
  • Patent number: 11862468
    Abstract: In an embodiment, a method includes: depositing a gate dielectric layer on a first fin and a second fin, the first fin and the second fin extending away from a substrate in a first direction, a distance between the first fin and the second fin decreasing along the first direction; depositing a sacrificial layer on the gate dielectric layer by exposing the gate dielectric layer to a self-limiting source precursor and a self-reacting source precursor, the self-limiting source precursor reacting to form an initial layer of a material of the sacrificial layer, the self-reacting source precursor reacting to form a main layer of the material of the sacrificial layer; annealing the gate dielectric layer while the sacrificial layer covers the gate dielectric layer; after annealing the gate dielectric layer, removing the sacrificial layer; and after removing the sacrificial layer, forming a gate electrode layer on the gate dielectric layer.
    Type: Grant
    Filed: January 29, 2021
    Date of Patent: January 2, 2024
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Kuei-Lun Lin, Chia-Wei Hsu, Xiong-Fei Yu, Chi On Chui, Chih-Yu Hsu, Jian-Hao Chen
  • Patent number: 11862717
    Abstract: Embodiments of the disclosure provide a lateral bipolar transistor structure with a superlattice layer and methods to form the same. The bipolar transistor structure may have a semiconductor layer of a first single crystal semiconductor material over an insulator layer. The semiconductor layer includes an intrinsic base region having a first doping type. An emitter/collector (E/C) region may be adjacent the intrinsic base region and may have a second doping type opposite the first doping type. A superlattice layer is on the E/C region of the semiconductor layer. A raised E/C terminal, including a single crystal semiconductor material, is on the superlattice layer. The superlattice layer separates the E/C region from the raised E/C terminal.
    Type: Grant
    Filed: November 24, 2021
    Date of Patent: January 2, 2024
    Assignee: GlobalFoundries U.S. Inc.
    Inventors: Vibhor Jain, John J. Pekarik, Alvin J. Joseph, Alexander M. Derrickson, Judson R. Holt
  • Patent number: 11848359
    Abstract: Methods are provided of selectively obtaining n-type and p-type regions from the same III-Nitride layer deposited on a substrate without using diffusion or ion-implantation techniques. The III-Nitride layer is co-doped simultaneously with n-type and p-type dopants, with p-type dopant concentration higher than n-type dopant to generate p-n junctions. The methods rely on obtaining activated p-type dopants only in selected regions to generate p-type layers, whereas the rest of the regions effectively behave as an n-type layer by having deactivated p-type dopant atoms.
    Type: Grant
    Filed: March 18, 2021
    Date of Patent: December 19, 2023
    Assignee: Ohio State Innovation Foundation
    Inventors: Siddharth Rajan, Mohammad Wahidur Rahman, Hareesh Chandrasekar
  • Patent number: 11824108
    Abstract: A semiconductor device includes: a base of a first nitride semiconductor; a buffer layer of a second nitride semiconductor provided on or above the base; a channel layer of a third nitride semiconductor provided on or above the buffer layer and having an opening portion; a barrier layer of a fourth nitride semiconductor provided on or above the channel layer; and an electrically conductive contact layer of a fifth nitride semiconductor provided in the opening portion and in contact with the buffer layer and the channel layer. A ratio of Al in a composition of the second nitride semiconductor is higher than or equal to that of the third nitride semiconductor. A ratio of Al in a composition of the first nitride semiconductor and a ratio of Al in a composition of the fourth nitride semiconductor are higher than that of the second nitride semiconductor.
    Type: Grant
    Filed: March 2, 2021
    Date of Patent: November 21, 2023
    Assignee: FUJITSU LIMITED
    Inventor: Atsushi Yamada
  • Patent number: 11823904
    Abstract: The technology relates to a semiconductor device including a hard mask easy to strip and capable of implementing a fine pattern with a high etch selectivity. According to an embodiment of the disclosure, a method for fabricating a semiconductor device comprises forming an etching target layer, forming a hard mask layer on the etching target layer, the hard mask layer including a first boron-doped silicon layer and a second boron-doped silicon layer on the first boron-doped silicon layer, and etching the etching target layer using the hard mask layer as an etching barrier, wherein the second boron-doped silicon layer has a larger boron concentration than the first boron-doped silicon layer.
    Type: Grant
    Filed: October 9, 2020
    Date of Patent: November 21, 2023
    Assignee: SK hynix Inc.
    Inventors: Bo Young Cho, Jin Hee Park, Soo Min Jo
  • Patent number: 11792983
    Abstract: A method used in forming a memory array comprising strings of memory cells comprises forming an upper stack directly above a lower stack. The lower stack comprises vertically-alternating lower-first-tiers and lower-second-tiers. The upper stack comprises vertically-alternating upper-first-tiers and upper-second-tiers. Lower channel openings extend through the lower-first-tiers and the lowers-second-tiers. The lower channel openings have sacrificial material therein. An upper of the lower-first-tiers or a lower of the upper-first-tiers comprises non-stoichiometric silicon nitride comprising (a) or (b), where (a): a nitrogen-to-silicon atomic ratio greater than 1.33 and less than 1.5; and (b): a nitrogen-to-silicon atomic ratio greater than or equal to 1.0 and less than 1.33. A higher of the upper-first-tiers that is above said lower upper-first-tier comprises silicon nitride not having either the (a) or the (b).
    Type: Grant
    Filed: October 12, 2020
    Date of Patent: October 17, 2023
    Assignee: Micron Technology, Inc.
    Inventors: Daniel Billingsley, Jordan D. Greenlee, John D. Hopkins, Yongjun Jeff Hu, Swapnil Lengade