Patents Examined by Sizo Vilakazi
  • Patent number: 9797333
    Abstract: There is provided a configuration in which a cylinder which is in an inlet stroke when an internal combustion engine is in a stop (automatic stop) state is determined and stored, and when starting the engine upon detection of a start request, the fuel injection of an initial cycle to the cylinder, which has been determined as having been stopped in the inlet stroke when the engine was in the stop state before starting, is split into a plurality if injections at least including an injection before engine rotation, to thereby perform injections. As a result, startability is improved while suppressing pre-ignition at the time of starting.
    Type: Grant
    Filed: April 16, 2015
    Date of Patent: October 24, 2017
    Assignee: HITACHI AUTOMOTIVE SYSTEMS, LTD.
    Inventors: Yoshitatsu Nakamura, Tomoyuki Murakami, Atsushi Murai
  • Patent number: 9797317
    Abstract: A method for controlling fuel switching of a fuel switching system in a vehicle via a controller configured to receive one or more measured signals in order to issue a fuel shortage warning or in order to control fuel switching is disclosed. The system includes an LPG rail pressure sensor for measuring a pressure in an LPG rail, and a bombe pressure sensor for measuring a pressure in the bombe. The method includes a first LPG rail pressure determining step of determining whether the pressure in the LPG rail is lower than a second reference value or not and a first bombe pressure determining step of determining whether the pressure in the bombe is lower than a third reference value or not. If at least one of the first pressure determining steps is positive, the method further includes switching the fuel to gasoline.
    Type: Grant
    Filed: May 29, 2015
    Date of Patent: October 24, 2017
    Assignees: HYUNDAI MOTOR COMPANY, KIA MOTORS CORPORATION
    Inventor: Yoo Jin Seo
  • Patent number: 9790876
    Abstract: For exhaust gas recirculation (EGR) fueling control, at least one donor cylinder of a plurality of cylinders in an engine provides exhaust gas to an air intake for the plurality of cylinders. A fuel variable restriction initially provides fuel concurrent with an intake stroke for the at least one donor cylinder in response to a transition from withholding the fuel to the plurality of cylinders.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: October 17, 2017
    Assignee: Cummins IP, Inc.
    Inventors: Samuel C. Geckler, Andrea Beck, Anthony Kyle Perfetto
  • Patent number: 9790870
    Abstract: A method and device for processing a signal (CRK) provided by a bidirectional sensor, the method includes the following steps: generation of a first signal (CRK_CNT) utilizing all the slots of the signal provided by the sensor, generation of a second signal (CRK_FW) utilizing the slots corresponding to a first direction of transit, generation of a third signal (CRK_BW) utilizing the slots corresponding to a second direction of transit, connection of the first signal to the input of the first electronic component, connection of the second and third signals to a second component, detection by the second component of edges of the signals received, change of the value of the predefined threshold (THMI) in the first component upon each detection of an edge.
    Type: Grant
    Filed: November 26, 2013
    Date of Patent: October 17, 2017
    Assignees: CONTINENTAL AUTOMOTIVE FRANCE, CONTINENTAL AUTOMOTIVE GMBH
    Inventor: Jerome Hou
  • Patent number: 9790868
    Abstract: An apparatus and method for igniting a gaseous fuel directly introduced into a combustion chamber of an internal combustion engine comprises steps of heating a space near a fuel injector nozzle; introducing a pilot amount of the gaseous fuel in the combustion chamber during a first stage injection event; controlling residency of the pilot amount in the space such that a temperature of the pilot amount increases to an auto-ignition temperature of the gaseous fuel whereby ignition occurs; introducing a main amount of the gaseous fuel during a second stage injection event after the first stage injection event; and using heat from combustion of the pilot amount to ignite the main amount.
    Type: Grant
    Filed: August 6, 2014
    Date of Patent: October 17, 2017
    Assignee: Westport Power Inc.
    Inventors: Jian Huang, Sandeep Munshi, Gordon P. McTaggart-Cowan, David R. Wagner
  • Patent number: 9790905
    Abstract: A fuel injection control device which is provided with an input terminal to which a first pulse signal for driving a liquid fuel injection valve is input and an output terminal from which the first pulse signal is output, and converts the first pulse signal which is input from the input terminal to a second pulse signal for driving a gaseous fuel injection valve, includes: a P-channel field-effect transistor interposed in a wiring which connects the input terminal and the output terminal; a switching control section which performs switching control between an ON state and an OFF state of the field-effect transistor; and a gate drive circuit which maintains the field-effect transistor in the ON state in a case where power supply to the switching control section is not performed.
    Type: Grant
    Filed: April 3, 2015
    Date of Patent: October 17, 2017
    Assignee: KEIHIN CORPORATION
    Inventors: Masahiro Katagata, Yusuke Sugimoto
  • Patent number: 9784197
    Abstract: There is provided an internal combustion engine control apparatus having an exhaust gas recirculation amount estimation unit that learns the relationship between an exhaust gas recirculation valve opening area calculated by an exhaust gas recirculation valve opening area calculation unit and an opening degree of the exhaust gas recirculation valve and estimates an recirculation amount of exhaust gas utilized in controlling an internal combustion engine, based on the relationship between the exhaust gas recirculation valve opening area and the opening degree of the exhaust gas recirculation valve.
    Type: Grant
    Filed: June 12, 2013
    Date of Patent: October 10, 2017
    Assignee: Mitsubishi Electric Corporation
    Inventors: Tomokazu Makino, Hideki Hagari, Takuo Watanuki
  • Patent number: 9784174
    Abstract: A rail vehicle has a diesel engine, an engine radiator and a cooling circuit that connects the diesel engine to the engine radiator. A cooling liquid is circulated in the cooling circuit, a cooling liquid temperature of the circulated cooling liquid and an outer air temperature of the atmospheric outer air are detected. The outer air temperature is compared with the outer air limit temperature, the cooling power of the engine radiator is set in such a way that the cooling liquid temperature corresponds to a normal operating temperature if the outer air temperature is less than the outer air limit temperature. The cooling power of the engine radiator is set such that the cooling liquid temperature corresponds to a lower operating temperature below the normal operating temperature if the outer air temperature is greater than the outer air limit temperature.
    Type: Grant
    Filed: February 8, 2012
    Date of Patent: October 10, 2017
    Assignee: SIEMENS AKTIENGESELLSCHAFT
    Inventor: Stefan Hintermeir
  • Patent number: 9784204
    Abstract: Method to detect and control detonation phenomena in an internal combustion engine provided with a number of cylinders and with at least two detonation sensors. For each combustion cycle as a function of the cylinder and of the engine point that is being explored, the method comprises the steps of processing the signal coming from each detonation sensor so as to determine a detonation energy for each detonation sensor; calculating a detonation index for each detonation sensor and controlling the internal combustion engine as a function of a total detonation index through the algebraic sum of the detonation indexes for each detonation sensor.
    Type: Grant
    Filed: November 18, 2015
    Date of Patent: October 10, 2017
    Assignee: Magneti Marelli S.p.A.
    Inventors: Filippo Cavanna, Riccardo Lanzoni
  • Patent number: 9777697
    Abstract: Methods and systems are provided for determining a type of spark plug fouling. In one example, a method may include differentiating spark plug fouling due to soot accumulation from spark plug fouling due to fuel additive accumulation based on a current on a control wire of the spark plug following application of a dwell command. Further, exhaust oxygen sensor degradation and/or exhaust catalyst degradation may be determined based on switching frequencies of one or more exhaust oxygen sensors and the type of spark plug fouling.
    Type: Grant
    Filed: November 6, 2014
    Date of Patent: October 3, 2017
    Assignee: Ford Global Technologies, LLC
    Inventors: Chris Paul Glugla, Garlan J. Huberts, Nelson William Morrow, Qiuping Qu
  • Patent number: 9777657
    Abstract: An internal combustion engine includes an air charging system. A method to control the air charging system includes providing a desired operating target command for the air charging system, and monitoring operating parameters of the air charging system. An error between the desired operating target command for the air charging system and the corresponding one of said operating parameters of the air charging system is determined, and scheduled PID gains are determined based on the error utilizing a PID controller. An adaptive algorithm is applied to modify the scheduled PID gains, and a system control command for the air charging system is determined based upon the modified scheduled PID gains. The air charging system is controlled based upon the system control command for the air charging system.
    Type: Grant
    Filed: December 17, 2014
    Date of Patent: October 3, 2017
    Assignee: GM Global Technology Operations LLC
    Inventors: Yue-Yun Wang, Ibrahim Haskara, Chen-Fang Chang, Steven E. Muldoon
  • Patent number: 9777653
    Abstract: Embodiments for controlling exhaust gas turbines are provided. In one embodiment, a method for controlling a turbocharger arrangement of an internal combustion engine, the turbocharger arrangement having at least a first exhaust-gas turbine and a second exhaust-gas turbine arranged downstream of the first, and an exhaust-gas aftertreatment system being arranged downstream of the second exhaust-gas turbine comprises, in a warm-up mode, controlling at least one exhaust-gas turbine so as to increase an inlet temperature of an exhaust-gas flow at the inlet into the exhaust-gas aftertreatment system. In this way, the exhaust-gas aftertreatment system may be rapidly heated.
    Type: Grant
    Filed: June 28, 2012
    Date of Patent: October 3, 2017
    Assignee: Ford Global Technologies, LLC
    Inventor: Simon Petrovic
  • Patent number: 9777665
    Abstract: An electronic control unit provided in an internal combustion engine detects a degree of inter-cylinder variation of the amount of fuel that is injected from a port injector, and a degree of inter-cylinder variation of the amount of fuel that is injected from an in-cylinder injector. In a case where the inter-cylinder variation of one of the port injector and the in-cylinder injector is equal to or greater than a predefined value, a process is executed of limiting, so as not to exceed an upper limit value, an injection proportion of the injector for which the inter-cylinder variation is equal to or greater than the predefined value. This upper limit value is set to be smaller as the degree of inter-cylinder variation of the injector, for which the inter-cylinder variation is equal to or greater than a predefined value, increases.
    Type: Grant
    Filed: September 2, 2015
    Date of Patent: October 3, 2017
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Kinji Morihiro
  • Patent number: 9771915
    Abstract: An engine starting apparatus is provided which is equipped with a starter, an inrush current reducer, and a starter mode switch. The inrush current reducer works to reduce an inrush current flowing through an electric motor installed in the starter when the electric motor is energized. The starter mode switch works to change a starter characteristic that is an output characteristic of the starter continuously or selectively at least between a low-torque/high-speed mode and a high-torque/low-speed mode. The starter mode switch places the starter in the high-torque/low-speed mode at least at a time when a piston of the engine is passing a top dead center, and the engine friction has been just maximized for the first time after the starter is actuated to crank the engine. This shortens a period of time required to start up the engine without sacrificing beneficial effects offered by the inrush current reducer.
    Type: Grant
    Filed: June 1, 2015
    Date of Patent: September 26, 2017
    Assignee: DENSO CORPORATION
    Inventor: Takashi Hirabayashi
  • Patent number: 9771913
    Abstract: In a method for actuating a starting device for an internal combustion engine, for the case in which the rotational speed of the toothed ring is below a limit value, first a stroke armature in a starter relay is moved and an electric starter motor is switched on after the starter pinion has engaged. If the rotational speed of the toothed ring exceeds the limit value, the starter motor is switched on before the starter pinion contacts the toothed ring.
    Type: Grant
    Filed: May 15, 2013
    Date of Patent: September 26, 2017
    Assignee: Robert Bosch GmbH
    Inventors: Karl-Otto Schmidt, Josef Weigt, Stefan Tumback, Birgit Kuettner
  • Patent number: 9765736
    Abstract: A fuel supply system includes a feeder fuel circuit configured to: (i) convey a first fuel in a direction of a mixing tank via a first pump device proceeding from a first fuel tank for a first fuel type; or (ii) convey a second fuel in the direction of the mixing tank via the first pump device proceeding from a second fuel tank for a second fuel type; and a booster fuel circuit configured to convey fuel via a second pump device proceeding from the mixing tank in a direction of at least one marine diesel engine, the booster fuel circuit having an automatic fine filter positioned upstream of or downstream of the at least one marine diesel engine and in the booster fuel circuit, respectively.
    Type: Grant
    Filed: December 18, 2013
    Date of Patent: September 19, 2017
    Assignee: MAN Diesel & Turbo SE
    Inventors: Arthur Koppel, Andreas Franke
  • Patent number: 9765734
    Abstract: Methods and systems are provided for regulating airflow through a charge air cooler integrated in an intake assembly. In one example, an engine intake assembly comprises a plenum having an integrated charge air cooler (CAC), a first header seal positioned around a circumference of a first CAC header, and a first rotatably movable seal positioned in a bypass passage of the plenum. The first movable seal interfaces via sliding contact with the first header seal and adjusting a position of the first movable seal may vary the amount of airflow through the bypass passage.
    Type: Grant
    Filed: December 23, 2014
    Date of Patent: September 19, 2017
    Assignee: Ford Global Technologies, LLC
    Inventor: Christopher Donald Wicks
  • Patent number: 9765682
    Abstract: Air/fuel mixture is received from a combustion chamber of the internal combustion engine into an enclosure about a flame kernel initiation gap between a first ignition body and a second ignition body. Air/fuel mixture received into the enclosure is directed into a flame kernel initiation gap. The mixture is then ignited in the flame kernel initiation gap.
    Type: Grant
    Filed: August 13, 2014
    Date of Patent: September 19, 2017
    Assignee: Woodward, Inc.
    Inventors: Domenico Chiera, Gregory James Hampson
  • Patent number: 9765707
    Abstract: The present invention relates to fuel systems for diesel engines. In particular, the invention relates to a dual fuel supply system (10) for a diesel engine having an indirect-injection system (12). The invention extends to a diesel engine incorporating the dual fuel supply system (10) and to a vehicle that incorporates a diesel engine having the dual fuel supply system (10). The dual-fuel supply system (10) includes a mixed fuel supply system (17) that includes a first stage (14) having a diesel tank (42) and LPG tank (44), and as second stage (16) to supply the fuel mixture to the injection system (12). The dual-fuel supply system (10) also includes diesel supply system (80) for delivering diesel to the injection system (12). Moreover, the dual fuel system (10) is configured to permit selective change over between the diesel supply system (80) and the mixed fuel system (17) to supply the injection system (12) selectively with either diesel or liquid fuel mixture respectively.
    Type: Grant
    Filed: April 20, 2010
    Date of Patent: September 19, 2017
    Assignee: DGC INDUSTRIES PTY LTD
    Inventors: Uwe Alexander Krug, Will Fisher
  • Patent number: 9765743
    Abstract: An injection valve may have a nozzle body with a longitudinal axis, in which a nozzle body aperture and at least one injection opening are arranged, wherein the nozzle body aperture can be coupled hydraulically to a high-pressure circuit for a fluid, at least one nozzle needle arranged in an axially movable manner in the nozzle body aperture, wherein the nozzle needle prevents fluid flow through the at least one injection opening in a closing position and allows fluid flow through the at least one injection opening outside the closing position, an actuator housing, which is designed to accommodate an actuator designed to act on the nozzle needle, and at least one fluid line, which is designed for hydraulic coupling to the high-pressure circuit for the fluid and is constructed and arranged separately from the actuator housing, and is directly coupled hydraulically to the nozzle body aperture.
    Type: Grant
    Filed: May 9, 2013
    Date of Patent: September 19, 2017
    Assignee: CONTINENTAL AUTOMOTIVE GMBH
    Inventors: Willibald Schurz, Martin Simmet, Gerd Schmutzler