Patents Examined by Stephen C Smith
  • Patent number: 10381534
    Abstract: Embodiments of the invention include a package for a light emitting diode (LED). The package includes a lead frame, an LED, and an optically reflective but electrically non-conductive molding. The lead frame has a first lead frame part and a second lead frame part electrically isolated from the first lead frame part, each lead frame part having at least one raised pillar. The molding is disposed over the lead frame except over the pillars of the lead frame. The LED is mounted on at least one pillar and is electrically coupled to at least one pillar. The molding serves the purpose of a highly reflective, electrically conductive material like silver without being subject to tarnishing.
    Type: Grant
    Filed: July 18, 2017
    Date of Patent: August 13, 2019
    Assignee: Lumileds LLC
    Inventors: Shu Li, Thuy Vu
  • Patent number: 10381511
    Abstract: A nitride semiconductor structure and a semiconductor light emitting device are revealed. The semiconductor light emitting device includes a substrate disposed with a first type doped semiconductor layer and a second type doped semiconductor layer. A light emitting layer is disposed between the first type doped semiconductor layer and the second type doped semiconductor layer. The second type doped semiconductor layer is doped with a second type dopant at a concentration larger than 5×1019 cm ?3 while a thickness of the second type doped semiconductor layer is smaller than 30 nm. Thereby the semiconductor light emitting device provides a better light emitting efficiency.
    Type: Grant
    Filed: October 2, 2017
    Date of Patent: August 13, 2019
    Assignee: Genesis Photonics Inc.
    Inventors: Yen-Lin Lai, Jyun-De Wu, Yu-Chu Li
  • Patent number: 10373949
    Abstract: A semiconductor device includes a semiconductor substrate and a passive component. The passive component is formed on the semiconductor substrate and includes a first polysilicon (poly) layer, a salicide blockage (SAB) layer and a first salicide layer. The SAB layer is formed on the first poly layer. The first salicide layer is formed on the SAB layer.
    Type: Grant
    Filed: August 15, 2017
    Date of Patent: August 6, 2019
    Assignee: MEDIATEK INC.
    Inventors: Yan-Liang Ji, Cheng-Hua Lin, Chih-Chung Chiu
  • Patent number: 10361096
    Abstract: In various embodiments, a method is provided. The method includes forming a metallization layer above at least one first region of a substrate. After forming the metallization layer at least one second region of the substrate is free of the metallization layer. The method further includes forming a barrier layer above the at least one first region of the substrate and above the at least one second region of the substrate. The barrier layer in the at least one first region of the substrate directly adjoins the metallization layer. The method further includes removing the barrier layer in the at least one first region of the substrate by drive-in of the barrier layer into the metallization layer.
    Type: Grant
    Filed: August 15, 2017
    Date of Patent: July 23, 2019
    Assignee: Infineon Technologies AG
    Inventors: Mathias Plappert, Stefan Krivec, Andreas Riegler, Karin Schrettlinger
  • Patent number: 10326024
    Abstract: A thin film transistor, an array substrate, a manufacturing method and a display device are provided. The thin film transistor includes a substrate and a gate layer, a source layer and a drain layer disposed on the substrate. The source layer and the drain layer are disposed in different layers and the drain layer and the gate layer are disposed in same and one layer.
    Type: Grant
    Filed: June 24, 2013
    Date of Patent: June 18, 2019
    Assignees: BOE TECHNOLOGY GROUP CO., LTD., HEFEI BOE OPTOELECTRONICS TECHNOLOGY CO., LTD.
    Inventors: Qingchao Meng, Qiangqiang Luo
  • Patent number: 10304949
    Abstract: A semiconductor device includes a trench-gate IGBT enabling the fine adjustment of a gate capacitance independent from cell performance. In a gate wiring lead-out region, a plurality of trenches is arranged spaced apart from each other in an X direction perpendicular to a Y direction. Each trench has a shape enclosed by a rectangular outer outline and a rectangular inner outline in plan view. A trench gate electrode is provided in each of the trenches so as to be electrically coupled to an extraction electrode. To obtain an adequate breakdown voltage between a collector and an emitter, the trenches are formed in a p-type floating region. An n?-type drift region is formed in a region located inside an inner outline of the trench in plan view, whereby a capacitance formed between the trench gate electrode and the n?-type drift region is used as the reverse transfer capacitance.
    Type: Grant
    Filed: October 20, 2016
    Date of Patent: May 28, 2019
    Assignee: Renesas Electronics Corporation
    Inventor: Hitoshi Matsuura
  • Patent number: 10304804
    Abstract: Embodiments include devices and methods, including a device including a substrate comprising a semiconductor, the substrate including a front side comprising active elements and a backside opposite the front side. The device includes a dielectric layer on the backside, and a passive component on the dielectric layer on the backside. In certain embodiments, the passive device is formed on a self-assembled monolayer (SAM). Other embodiments are described and claimed.
    Type: Grant
    Filed: March 31, 2017
    Date of Patent: May 28, 2019
    Assignee: INTEL CORPORATION
    Inventors: Fay Hua, Telesphor Kamgaing, Johanna M. Swan
  • Patent number: 10305035
    Abstract: The present invention discloses a preparation method of a Cu-based resistive random access memory, and a memory. The preparation method includes: forming a copper wire in a groove through a Damascus copper interconnection process, wherein the copper wire includes a lower copper electrode for growing a storage medium, and the copper wire is arranged above a first capping layer; forming a second capping layer above the copper wire; forming a hole at a position corresponding to the lower copper electrode on the second capping layer, wherein the pore is used for exposing the lower copper electrode; performing composition and a chemical combination treatment on the lower copper electrode to generate a compound barrier layer, wherein the compound barrier layer is a compound formed by the chemical combination of elements Cu, Si and N, or a compound formed by the chemical combination of elements Cu, Ge and N; and depositing a solid electrolyte material and an upper electrode on the compound barrier layer.
    Type: Grant
    Filed: April 22, 2016
    Date of Patent: May 28, 2019
    Assignee: THE INSTITUTE OF MICROELECTRONICS OF CHINESE ACADEMY OF SCIENCES
    Inventors: Hangbing Lv, Ming Liu, Qi Liu, Shibing Long
  • Patent number: 10297546
    Abstract: Interconnect structures for a security application and methods of forming an interconnect structure for a security application. A sacrificial masking layer is formed that includes a plurality of particles arranged with a random distribution. An etch mask is formed using the sacrificial masking layer. A hardmask is etched while masked by the etch mask to define a plurality of mask features arranged with the random distribution. A dielectric layer is etched while masked by the hardmask to form a plurality of openings in the dielectric layer that are arranged at the locations of the mask features. The openings in the dielectric layer are filled with a conductor to define a plurality of conductive features.
    Type: Grant
    Filed: July 18, 2017
    Date of Patent: May 21, 2019
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Erdem Kaltalioglu, Ronald G. Filippi, Jr., Ping-Chuan Wang, Cathryn Christiansen
  • Patent number: 10276547
    Abstract: The present disclosure provides an image display module and a method of manufacturing the same, and a display device. The image display module includes a circuit substrate, a light-emitting group and a light-shading structure. The light-emitting group includes a plurality of light-emitting chips for generating a predetermined image. Each light-emitting chip has a light-emitting region, and the light-emitting region has an exposed portion and a shading portion. The light-shading structure includes a light-shading unit and a plurality of through openings passing through the light-shading unit. The exposed portion of the light-emitting region of each light-emitting chip is exposed by the through opening. The shading portion of the light-emitting region of each light-emitting chip is contacted and covered by the light-shading unit. The exposed portions of the light-emitting regions can be arranged regularly in a predetermined shape due to the through openings that are arranged in a regular arrangement.
    Type: Grant
    Filed: January 11, 2018
    Date of Patent: April 30, 2019
    Assignee: ASTI GLOBAL INC., TAIWAN
    Inventor: Chien-Shou Liao
  • Patent number: 10276838
    Abstract: Provided are an organic light-emitting display apparatus and a method of manufacturing the same. An organic light-emitting display apparatus includes: a substrate including an active area and a pad area, an anode electrode in the active area, an organic emission layer on the anode electrode, a cathode electrode on the organic emission layer, an auxiliary electrode connected to the cathode electrode, a signal pad in the pad area, and a first pad electrode connected to the signal pad, the first pad electrode covering a top of the signal pad, the first pad electrode being configured to prevent the top of the signal pad from being corroded, wherein the auxiliary electrode includes a first auxiliary electrode and a second auxiliary electrode connected to the first auxiliary electrode through a contact hole, and wherein the first pad electrode includes a same material as the first auxiliary electrode.
    Type: Grant
    Filed: February 6, 2018
    Date of Patent: April 30, 2019
    Assignee: LG Display Co., Ltd.
    Inventors: SeJune Kim, Joonsuk Lee, SoJung Lee, Jin-Hee Jang, Jonghyeok Im, JaeSung Lee
  • Patent number: 10276613
    Abstract: An image sensor and a method for forming an image sensor are provided. The image sensor includes a substrate, and the substrate includes a pixel region, a peripheral region and a boundary region, and the boundary region is formed between the pixel region and the peripheral region. The image sensor also includes a first gate stack structure formed in the pixel region and a second gate stack structure formed in the peripheral region. The second gate stack structure includes a high-k dielectric layer and a first metal layer.
    Type: Grant
    Filed: March 31, 2018
    Date of Patent: April 30, 2019
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventor: Ming-Chyi Liu
  • Patent number: 10269813
    Abstract: A method of manufacturing a semiconductor device includes: forming an insulating film above a semiconductor substrate; forming a conductive film on the insulating film; forming a dielectric film on the conductive film; forming a plurality of upper electrodes at intervals on the dielectric film; forming a first protective insulating film on the upper electrodes and the dielectric film by a sputtering method; forming a second protective insulating film on the first protective insulating film by an atomic layer deposition method, thereby filling gaps of a grain boundary of the dielectric film with the second protective insulating film; and patterning the conductive film after the second protective insulating film is formed to provide a lower electrode.
    Type: Grant
    Filed: February 1, 2018
    Date of Patent: April 23, 2019
    Assignee: FUJITSU SEMICONDUCTOR LIMITED
    Inventors: Youichi Okita, Hideki Ito, Wensheng Wang
  • Patent number: 10269959
    Abstract: A device comprises a buried layer over a substrate, a first well over the buried layer, a first high voltage region and a second high voltage region extending through the first well, a first drain/source region in the first high voltage region, a first gate electrode over the first well, a first spacer on a first side of the first gate electrode, wherein the first spacer is between the first drain/source region and the first gate electrode, a second spacer on a second side of the first gate electrode, a second drain/source region in the second high voltage region and a first isolation region in the second high voltage region and between the second drain/source region and the first gate electrode.
    Type: Grant
    Filed: October 10, 2017
    Date of Patent: April 23, 2019
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Po-Yu Chen, Wan-Hua Huang, Jing-Ying Chen, Kuo-Ming Wu
  • Patent number: 10269937
    Abstract: An integrated circuit device includes a semiconductor substrate, and a semiconductor strip extending into the semiconductor substrate. A first and a second dielectric region are on opposite sides of, and in contact with, the semiconductor strip. Each of the first dielectric region and the second dielectric region includes a first portion level with the semiconductor strip, and a second portion lower than the semiconductor strip. The second portion further includes a portion overlapped by the semiconductor strip.
    Type: Grant
    Filed: January 8, 2018
    Date of Patent: April 23, 2019
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Tai-Chun Huang, Chih-Tang Peng, Chia-Wei Chang, Ming-Hua Yu, Hao-Ming Lien, Chao-Cheng Chen, Tze-Liang Lee
  • Patent number: 10262935
    Abstract: A memory device including a memory cell array region, includes, column selection signal lines formed in a first column conduction layer of the memory cell array region and extending in a column direction, global input-output data lines formed in a second column conduction layer of the memory cell array region different from the first column conduction layer and extending in the column direction and power lines formed in a shield conduction layer of the memory cell array region between the first column conduction layer and the second column conduction layer. The noises in the signal lines and the power lines may be reduced and performance of the memory device may be enhanced by forming the column selection signal lines and the global input-output data lines in different column conduction layers and forming the power lines in the shield conduction layer between the column conduction layers.
    Type: Grant
    Filed: August 15, 2017
    Date of Patent: April 16, 2019
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Young-Ju Kim, Su-A Kim, Soo-Young Kim, Min-Woo Won, Bok-Yeon Won, Ji-Suk Kwon, Young-Ho Kim, Ji-Hak Yu, Hyun-Chul Yoon, Seok-Jae Lee, Sang-Keun Han, Woong-Dai Kang, Hyuk-Joon Kwon, Bum-Jae Lee
  • Patent number: 10256287
    Abstract: Embodiments of systems, methods, and apparatus for improving ESD performance and switching time for semiconductor devices including metal-oxide-semiconductor (MOS) field effect transistors (FETs), and particularly to MOSFETs fabricated on Semiconductor-On-Insulator (“SOI”) and Silicon-On-Sapphire (“SOS”) substrates.
    Type: Grant
    Filed: March 2, 2018
    Date of Patent: April 9, 2019
    Assignee: pSemi Corporation
    Inventors: Eric S. Shapiro, Matt Allison
  • Patent number: 10242983
    Abstract: A semiconductor device includes a semiconductor fin arranged on a substrate, a gate stack arranged over a channel region of the fin, and a spacer arranged adjacent to the gate stack. A source/drain region is arranged in the fin the source/drain region having a cavity that exposes a portion of the semiconductor fin. An insulator layer is arranged over a portion of the fin, and a conductive contact material is arranged in the cavity and over portions of the source/drain region.
    Type: Grant
    Filed: October 3, 2017
    Date of Patent: March 26, 2019
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Kangguo Cheng, Chi-Chun Liu, Peng Xu, Jie Yang
  • Patent number: 10243049
    Abstract: A nitride semiconductor device includes a first semiconductor layer including a nitride semiconductor, a second semiconductor layer contacting the first semiconductor layer and including a nitride semiconductor, a source electrode, a drain electrode, a first gate electrode, a second gate electrode provided on an opposite side, a first insulating layer and a second insulating layer. The gate electrode has a protrusion portion inside the semiconductor layer. A distance between the first gate electrode and the protrusion portion of the second gate electrode is shorter than a distance between the source electrode and the second insulating layer, and shorter than a distance between the drain electrode and the second insulating layer.
    Type: Grant
    Filed: September 5, 2017
    Date of Patent: March 26, 2019
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Aya Shindome, Hisashi Saito, Tatsuo Shimizu
  • Patent number: 10236365
    Abstract: A homoepitaxial, ultrathin tunnel barrier-based electronic device in which the tunnel barrier and transport channel are made of the same material—graphene.
    Type: Grant
    Filed: January 30, 2018
    Date of Patent: March 19, 2019
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Adam L. Friedman, Olaf M. J. van 't Erve, Jeremy T. Robinson, Berend T. Jonker, Keith E. Whitener