Patents Examined by Steve T Chung
  • Patent number: 8324868
    Abstract: A modular and scalable power source can be used to supplement and/or replace existing sources of power. In some embodiments, a DC source can be used to charge a battery in a host system, provide power as a back-up system, or be a primary source of power. The power source includes a set of battery units and one or more circuits that provide an alternative signal path around the battery units if the battery units are at a particular charge level. Temperature sensors are used to turn off or otherwise adjust the alternative signal paths if the temperatures of the alternative signal paths become too high.
    Type: Grant
    Filed: August 21, 2008
    Date of Patent: December 4, 2012
    Assignee: Valence Technology, Inc.
    Inventors: Alexander Choi, Sunny Chan, Kwun Kin
  • Patent number: 8310199
    Abstract: An electronic circuit for an electric appliance. In one embodiment, there is provided an electronic circuit for a battery-operated electric appliance, which can be inductively fed by an external electric power source, comprising a charging circuit for charging an accumulator (A), which encompasses a charging coil (L2) and a diode (D2), wherein the accumulator (A) is connected in series to the diode (D2) and the charging coil (L2), a light emitting diode (LED) as display for the charging process and/or charging status of the accumulator (A), wherein an end of the charging coil (L2) is connected to the cathode of the diode (D2) and the anode of the light emitting diode (LED) and the negative pole of the accumulator (A) is connected to the anode of the diode (D2).
    Type: Grant
    Filed: December 1, 2006
    Date of Patent: November 13, 2012
    Assignee: Braun GmbH
    Inventors: Torsten Klemm, Joachim Lepper, Matthias Schiebahn
  • Patent number: 8256548
    Abstract: A method controls or regulates the charge state of an electrical energy accumulator of a hybrid vehicle, where, in some operating states, the energy accumulator is charged from a low to a higher charge state level by way of an electric machine driven by an internal-combustion engine of the hybrid vehicle and operating as a generator. The level of the charge state to which the energy accumulator is charged by the internal-combustion engine is selected as a function of a parameter representing the load of the electrical system or correlating thereto.
    Type: Grant
    Filed: March 21, 2011
    Date of Patent: September 4, 2012
    Assignee: Bayerische Motoren Werke Aktiengesellschaft
    Inventor: Holger Hummel
  • Patent number: 8242747
    Abstract: In a charging control circuit for controlling charging of a secondary battery, a charging transistor generates a charging current according to a control signal input to a control electrode and outputs the charging current to the secondary battery. The proportional current generation transistor generates and outputs a proportional current proportional to the charging current output by the charging transistor. The constant current charging controller controls the charging transistor so that the proportional current generated by the proportional current generation transistor attains a predetermined first value. The constant current charging controller controls a voltage of a current output terminal of the proportional current generation transistor so that a voltage difference between the voltage of the current output terminal of the proportional current generation transistor and a voltage of a current output terminal of the charging transistor is maintained at a predetermined second value.
    Type: Grant
    Filed: March 5, 2009
    Date of Patent: August 14, 2012
    Assignee: Ricoh Company, Ltd.
    Inventor: Kuniaki Arai
  • Patent number: 8237408
    Abstract: A battery charging apparatus and method adapted to reduce battery capacity as a function of increased temperature thereby permitting partial charges at temperatures in excess of manufacturer's recommendations. The method includes steps of reducing charging current and charging voltage as a function of battery temperature thereby averting chemical instability within the battery. The apparatus detects battery temperature and includes a controller that will control charger voltage and current as a function of temperature and determine a suitable charging capacity.
    Type: Grant
    Filed: January 22, 2010
    Date of Patent: August 7, 2012
    Inventors: Steve Carkner, Paul Jan Melichar, Joon Kim
  • Patent number: 8232769
    Abstract: A passive battery discharge apparatus located within a cap. The cap extends over battery contacts to be discharged. The discharge apparatus includes a conductive material with specified volumetric resistivity properties that is formed into a pad. The cap is positioned over the contacts so that the pad touches and spans between the contacts to be discharged. A spring insures good contact between the pad and the battery contacts. A metal heat sink provides added thermal control. The discharge apparatus provides an economical solution to safely transport batteries that are beyond their useful service life by avoiding circuit components in favor of conductive elastomers or conductive foams.
    Type: Grant
    Filed: June 19, 2009
    Date of Patent: July 31, 2012
    Assignee: Bren-Tronics, Inc.
    Inventor: Henry Paczkowski
  • Patent number: 8203312
    Abstract: A battery pack includes at least one secondary battery, a fuse, and a control section. The fuse is configured to cut off charge or discharge current of the secondary battery upon detection of an abnormality of the secondary battery. The control section is configured to detect the abnormality of the secondary battery, and to perform a fusion-cutting process of fusion-cutting the fuse in accordance with the result of the detection. Upon detection of the abnormality, the control section measures a first potential being the potential of a subsequent stage of the fuse and a second potential being the potential of the secondary battery. If it is found from the result of the measurement that the first potential and the second potential are equal, the control section determines that the fuse has not been fusion-cut by the fusion-cutting process, and stops the fusion-cutting process.
    Type: Grant
    Filed: April 22, 2009
    Date of Patent: June 19, 2012
    Assignee: Sony Corporation
    Inventor: Yasuo Yoshikawa
  • Patent number: 8198866
    Abstract: In one aspect, a handheld electric appliance includes: an oscillating electric motor or linear motor controlled by control circuitry; a battery connected to the oscillating electric or linear motor; and charge detection circuitry configured to determine a charging state of the battery. The charge detection circuitry is coupled to the control circuitry such that, in response to the charge detection circuitry determining that the charging state of the battery reaches a predetermined threshold, the control circuitry activates the oscillating electric motor or linear motor to cause noise generated by the motor to perceptibly change to indicate a threshold charging state.
    Type: Grant
    Filed: August 8, 2007
    Date of Patent: June 12, 2012
    Assignee: Braun GmbH
    Inventor: Ingo Vetter
  • Patent number: 8183818
    Abstract: A system for energizing an energy storage device includes an electric power source, an energy system in communication with the electric power source, and a switching time control multiplexer. The energy storage system includes at least two parallel energy storage devices. The switching time control multiplexer is configured to supply total charging current from the electric power source to the energy storage system such that each storage device is charged in an alternating manner with the total charging current being less than a total charging current required for parallel charging.
    Type: Grant
    Filed: March 6, 2009
    Date of Patent: May 22, 2012
    Inventor: Hesham A. Elhalis
  • Patent number: 8179098
    Abstract: Disclosed is a charge controlling semiconductor integrated circuit including: an electric current controlling transistor connected between a voltage input terminal and an output terminal to control an electric current which flows from the voltage input terminal to the output terminal; a power source monitoring circuit to detect status of input voltage of the voltage input terminal; and a transistor element connected between the voltage input terminal and a ground potential point, wherein a bypass capacitor is connected to the voltage input terminal; and the transistor element is turned on and the bypass capacitor discharges when the power source monitoring circuit detects the input voltage of the voltage input terminal is cut off.
    Type: Grant
    Filed: September 1, 2009
    Date of Patent: May 15, 2012
    Assignee: Mitsumi Electric Co., Ltd.
    Inventors: Gentaro Kurokawa, Yoshihiro Takahashi
  • Patent number: 8179100
    Abstract: A technique for dynamically adjusting an output voltage of forward converter circuits for a battery charging operation is provided. The technique allows for varying voltage at the charging battery by manipulating the duty cycles of two forward converter circuits. Method and systems allow for increasing synchronized duty cycles in a pair of forward converter circuits in response to a changing battery charge state that requires a higher voltage output then changing a phase shift between the duty cycles in response to further increases in output voltage demand. The methods and systems also allow for setting a phase shift between duty cycles in a pair of forward converter circuits based on battery rating and then altering pulse width in response to changing battery charge state.
    Type: Grant
    Filed: March 6, 2009
    Date of Patent: May 15, 2012
    Assignee: Illinois Tool Works Inc.
    Inventor: Bernard J. Vogel
  • Patent number: 8179139
    Abstract: The rechargeable battery abnormality detection apparatus is provided with an internal short circuit detection section (20b) that monitors rechargeable battery (1) voltage change when no charging or discharging takes place, and detects internal short circuit abnormality when battery voltage drop during a predetermined time period exceeds a preset threshold voltage; a degradation appraisal section (20d) that judges the degree of rechargeable battery degradation; and a threshold control section (20c) that incrementally increases the threshold voltage according to the degree of degradation determined by the degradation appraisal section (20d).
    Type: Grant
    Filed: January 25, 2010
    Date of Patent: May 15, 2012
    Assignee: Sanyo Electric Co., Ltd.
    Inventors: Atsushi Kawasumi, Toru Nishikawa
  • Patent number: 8169186
    Abstract: A system and method for charging an electric vehicle includes identifying vehicle information corresponding to the electric vehicle based on an electronic image of the electric vehicle, retrieving from an electronically stored local database a location of a charging port on the electric vehicle based on the vehicle information, robotically moving a charging connector according to the retrieved location to engage the charging port of the electric vehicle, querying the local database to determine whether a current time corresponds to an energy efficient usage time based on energy efficient usage data received from a power grid, and initiating a charging process upon determining that the current time corresponds to the energy efficient usage time.
    Type: Grant
    Filed: August 19, 2011
    Date of Patent: May 1, 2012
    Assignee: Interim Designs Inc.
    Inventors: Joseph C. Haddad, Daniel B. Lysak
  • Patent number: 8159195
    Abstract: The present invention discloses an overvoltage protection (OVP) circuit for use in a charger circuit system, comprising: a power transistor electrically connected between a voltage supply and a battery; an OVP circuit which turns off the transistor when a voltage supply exceeds a threshold value; and a multiplexing circuit electrically connected between an output of the OVP circuit and the gate of the transistor. The present invention also discloses a charger circuit with an OVP function, comprising: a single power transistor electrically connected between a voltage supply and a battery; an OVP control circuit which turns off the power transistor when a voltage supply exceeds a threshold value; and a charger control circuit which controls the gate of the power transistor to determine a charge current to the battery when the voltage supply does not reach the threshold value.
    Type: Grant
    Filed: March 10, 2009
    Date of Patent: April 17, 2012
    Assignee: Richtek Technology Corporation
    Inventors: Chien-Ping Lu, Nien-Hui Kung, Li-Wei Lee, Kwan-Jen Chu, Ying-Hsin Hsing, Chun-Tsung Chen
  • Patent number: 8154248
    Abstract: A rechargeable battery pack for a power tool can have a data terminal that provides a signal that is indicative of whether the voltage is below a threshold and can serve as both a pre-charge signal for a charger and as a stop-discharge signal for a power tool. A charger can include a power supply circuit and a voltage detection circuit. A charger control module can receive a signal indicative of the voltage of the battery pack and determine a pre-charge time based on the voltage and can monitor a change in the voltage of the battery pack during the pre-charge operation and stop the pre-charge operation based on the change in voltage and the time period.
    Type: Grant
    Filed: October 7, 2008
    Date of Patent: April 10, 2012
    Assignee: Black & Decker Inc.
    Inventors: Nathan Cruise, Tarek Aydin, Keith D. Flaharty, Fugen Qin, Steven J. Phillips
  • Patent number: 8154253
    Abstract: A circuit for detecting battery cell abnormalities in a multi-cell series battery for effectively and quickly detecting abnormalities with a simple, small circuit that provides improved reliability, safety and service life of the multi-cell series battery. In the voltage monitoring device 12, immediately after the start of the monitoring cycle of any battery cell BTi, cell voltage abnormality detector 14 checks whether cell voltage Vi is outside of the normal operating range. The cell voltage abnormality detector 14 has: a group of selection switches 18 for selecting any battery cell BT of multi-cell series battery 10 and retrieving its voltage to first and second monitoring terminals A, B; cell voltage/monitoring current converter 20; monitoring current/monitoring voltage converter 22; comparison/evaluation circuit 24; evaluation signal output circuit 26 and abnormality detection controller 28.
    Type: Grant
    Filed: September 12, 2008
    Date of Patent: April 10, 2012
    Assignee: Texas Instruments Incorporated
    Inventor: Kazuya Omagari
  • Patent number: 8154250
    Abstract: The present invention discloses a battery charging controller for achieving a balanced battery charge. The battery charging controller includes a voltage divider, a switch module and a balance circuit. A reference voltage generated by the voltage divide is used to determine which battery unit in a battery module has an insufficient voltage lower than the others, so that the balance circuit controls the switch module to allow a larger current to charge a lower-voltage battery than a higher-voltage battery, so as to result in substantially the same voltage for each fully charged battery of the battery module.
    Type: Grant
    Filed: March 9, 2009
    Date of Patent: April 10, 2012
    Assignee: Green Solution Technology Co., Ltd.
    Inventors: Chung-Che Yu, Shian-Sung Shiu
  • Patent number: 8148940
    Abstract: The present invention relates to a multi-functional vehicle charger and the charging process of the same. The vehicle charger includes an enclosure defining the vehicle charger. The enclosure includes a USB port disposed thereon, a power plug corresponding to a vehicle power outlet on one end, and a wire connected with a power terminal at the other end. The power terminal, the USB port, and the power plug are connected to a charge monitor circuit. Thus the vehicle charger can be connected with various electrical appliances for charging by insertion of the power terminal on the wire into a socket of a Li-ion battery and by a connecting wire that connects the USB port to electric appliances with USB functionality. Thereby, power is supplied by various output ends when the vehicle charger is inserted into a power outlet in vehicles.
    Type: Grant
    Filed: March 3, 2009
    Date of Patent: April 3, 2012
    Inventor: Yun-Zhao Liu
  • Patent number: 8143863
    Abstract: A circuit for controlling a current flowing through a battery includes a driver and a filter coupled to the driver. The driver can generate a pulse signal in a first operating mode and generate a first signal in a second operating mode to control the current through the battery. The filter can filter the pulse signal to provide a filtered DC signal to adjust an on-resistance of a switch in series with the battery based on a duty cycle of the pulse signal in the first operating mode. The filter can receive the first signal and provide a second signal to drive the switch in a linear region in the second operating mode.
    Type: Grant
    Filed: October 12, 2009
    Date of Patent: March 27, 2012
    Assignee: O2Micro, Inc
    Inventor: Guoxing Li
  • Patent number: 8143858
    Abstract: When a battery pack, comprising an overcurrent protection section for stopping, when a current greater than a first threshold value passes, a current supply, is connected to a power supply terminal of an information processing apparatus, the information processing apparatus draws a current greater than the first threshold value. Thereafter, an output current and output voltage of the battery pack are detected, thereby measuring a time period from when a current drawing section draws the current greater than the first threshold value to when the battery pack stops the current supply. When the measured time period is within a first predetermined time range, the battery pack is permitted to supply an electric power. On the other hand, when the measured time period is not in the first predetermined time range, the battery pack is prohibited from supplying the electric power.
    Type: Grant
    Filed: January 24, 2007
    Date of Patent: March 27, 2012
    Assignee: Nintendo Co., Ltd.
    Inventors: Shuichi Tsugawa, Takeshi Nabesaka