Patents Examined by Terressa M. Boykin
  • Patent number: 8017715
    Abstract: An object of the present invention is to provide a polyester film having excellent dimensional stability to temperature and humidity. The present invention is a polyester containing a dicarboxylic acid component and a diol component, wherein (i) the dicarboxylic acid component contains not less than 5 mol % and less than 50 mol % of a recurring unit represented by the following formula (A) and more than 50 mol % and not more than 95 mol % of a recurring unit represented by the following formula (B): wherein RA is an alkylene group having 2 to 10 carbon atoms, wherein RB is a phenylene group or naphthalenediyl group; and (ii) the diol component contains 90 to 100 mol % of a recurring unit represented by the following formula (C): —O—RC—O—??(C) wherein RC is an alkylene group having 2 to 10 carbon atoms, and a film comprising the same.
    Type: Grant
    Filed: January 18, 2008
    Date of Patent: September 13, 2011
    Assignee: Teijin Limited
    Inventors: Eiji Kinoshita, Tomoyuki Kishino, Kazuteru Kohno, Tatsuya Ogawa
  • Patent number: 8017723
    Abstract: Processes for making polyesters in a polyester production facility are disclosed, that include the steps of forming a reaction medium comprising at least one monomer that includes terephthalic acid (TPA) and/or an ester derivative of TPA; subjecting at least a portion of the reaction medium to one or more chemical reactions in the polymer production facility to thereby produce the polyester; and heating the reaction medium at one or more locations in the polyester production facility, wherein at least 50 percent of the total energy input employed for the heating of the reaction medium is provided by indirect heat exchange between the reaction medium and steam.
    Type: Grant
    Filed: September 11, 2009
    Date of Patent: September 13, 2011
    Assignee: Grupo Petrotemex, S.A. de C.V.
    Inventors: Alan George Wonders, James Donald Simpson, Bruce Roger DeBruin
  • Patent number: 8017722
    Abstract: A process for production of a plant-derived component-containing polycarbonate represented by the following formula (3): (wherein R1-R4 each independently represent a group selected from among hydrogen, alkyl, cycloalkyl and aryl, and n is the number of repeating units), by melt polycondensation using as the starting materials a specified diol, having a total content of Na, Fe and Ca of no greater than 2 ppm and a purity analysis value of at least 99.7% by gas chromatography, and a specified carbonic acid diester, having a total content of Na, Fe and Ca of no greater than 2 ppm and a purity analysis value of at least 99.7% by gas chromatography.
    Type: Grant
    Filed: May 14, 2008
    Date of Patent: September 13, 2011
    Assignee: Teijin Limited
    Inventors: Akimichi Oda, Eiichi Kitazono, Toshiyuki Miyake, Masami Kinoshita, Mizuho Saito
  • Patent number: 8013110
    Abstract: Processes for making polyesters in a polyester production facility are disclosed, that include the steps of: forming a reaction medium comprising at least one monomer that includes terephthalic acid (TPA) and/or an ester derivative of TPA; subjecting at least a portion of the reaction medium to one or more chemical reactions in the polyester production facility to thereby produce the polyester; generating high-pressure steam having a pressure of at least 5 megapascals; heating one or more process fluid streams of the polyester production facility by indirect heat exchange with the high-pressure steam, wherein the process fluid streams include any stream that is formed predominately of the reaction medium and/or the at least one monomer; heating a heat transfer medium (HTM) via indirect heat exchange with the high-pressure steam to thereby form heated HTM; and heating at least a portion of the process fluid streams by indirect heat exchange with the heated HTM.
    Type: Grant
    Filed: September 11, 2009
    Date of Patent: September 6, 2011
    Assignee: Grupo Petrotemex, S.A. de C.V.
    Inventors: Alan George Wonders, James Donald Simpson, Bruce Roger DeBruin
  • Patent number: 8013106
    Abstract: An optical lens which can be produced by injection molding on an industrial scale, and which has a high refractive index, a low Abbe's number, a low birefringence index, a high transparency and a high glass transition temperature. The optical lens can be produced by injection molding of a polycarbonate resin (preferably having a reduced viscosity of 0.2 dl/g or higher and a glass transition temperature of 120 to 160° C.), wherein the polycarbonate resin is produced by reacting a diol component comprising 99 to 51 mol % of 9,9-bis(4-(2-hydroxyethoxy)phenyl)fluorene and 1 to 49 mol % of bisphenol A with a carbonate diester. It becomes possible to produce an optical lens preferably having a refractive index of 1.60 to 1.65, an Abbe's number of 30 or smaller, a birefringence index of 300 nm or lower and an all light transmittance of 85.0% or higher.
    Type: Grant
    Filed: June 1, 2007
    Date of Patent: September 6, 2011
    Assignee: Mitsubishi Gas Chemical Company, Inc.
    Inventors: Noriyuki Kato, Toshiaki Yamada, Eiji Koshiishi, Shu Yoshida
  • Patent number: 8013107
    Abstract: The present invention provides a method of producing polyalkylene terephthalate, which comprises: introducing a prepolymer of polyalkylene terephthalate that is in a molten state comprising 70 mol % or more of ethylene terephthalate or 1,4-butylene terephthalate repeating units and having an intrinsic viscosity [?] between 0.2 and 2 dl/g through a feed opening to a polymerization reactor; discharging the introduced prepolymer from holes of a perforated plate; and polymerizing the prepolymer under reduced pressure, while allowing the prepolymer to fall along the surface of a support that is open towards the outside at a temperature between the [crystalline melting point?10° C.] of the prepolymer or higher and the [crystalline melting point+30° C.] of the prepolymer or lower under the conditions represented by a formula S1/S2>1, wherein S1 is the surface area of falling polyalkylene terephthalate, and S2 is the area where the support is in contact with polyalkylene terephthalate.
    Type: Grant
    Filed: October 7, 2004
    Date of Patent: September 6, 2011
    Assignee: Asahi Kasei Chemicals Corporation
    Inventors: Hiroshi Yokoyama, Katsuhiro Fujimoto, Muneaki Aminaka, Junichi Sugimoto, Tsutomu Katsumata
  • Patent number: 8008423
    Abstract: Disclosed are compositions comprising antioxidants and stabilizers, such as, acid scavengers or organic phosphorus stabilizers, and optionally further comprising co-stabilizers. The disclosed compositions are useful as stabilizers for polyolefins and other polymeric materials. The disclosed compositions and methods generally provide longer shelf lifes and better oxidative resistance to materials than currently available antioxidants.
    Type: Grant
    Filed: May 28, 2010
    Date of Patent: August 30, 2011
    Assignee: Polnox Corporation
    Inventors: Vijayendra Kumar, Rajesh Kumar, Ashish Dhawan, Sui-Zhou Yang, Ashok L. Cholli
  • Patent number: 8003750
    Abstract: A thermosetting composition comprising (a) 97.9 to 40 percent by weight of at least one bis(dihydrobenzoxazine) prepared by the reaction of an unsubstituted or substituted bisphenol with at least one unsubstituted position ortho to each hydroxyl group, formaldehyde and a primary amine; (b) 2 to 50 percent by weight of at least one organic polyamine; and (c) 0.1 to 10 percent by weight of at least one curing catalyst, selected from the group of carboxylic acids, sulfonic acids and phosphonic acids having at least two acid groups and no other reactive groups; wherein the percent by weight refer to the total amount of components (a), (b) and (c) in the composition, with the proviso that (a), (b) and (c) add up to 100 percent by weight; and (d) and optionally other components. Cured products of these compositions show valuable chemical, physical and mechanical properties.
    Type: Grant
    Filed: January 31, 2008
    Date of Patent: August 23, 2011
    Assignee: Huntsman International LLC
    Inventor: Frans Setiabudi
  • Patent number: 7999057
    Abstract: A gas-phase, continuous process is provided for the manufacture of 2,6-diaminopyridine and related compounds from glutaronitriles, which are used industrially as compounds and as components in the synthesis of a variety of useful materials. The synthesis proceeds by means of a dehydrogenative aromatization process.
    Type: Grant
    Filed: July 8, 2008
    Date of Patent: August 16, 2011
    Assignee: E. I. du Pont de Nemours and Company
    Inventors: Keith W. Hutchenson, Aaron Minter, Gregg Sunshine
  • Patent number: 7999056
    Abstract: The object of the present invention is to provide a method of producing plural kinds of aromatic polycarbonates by a melt process without changeover loss and quality deterioration. The present invention relates to a production method of an aromatic polycarbonate, comprising supplying a molten mixture of raw materials of an aromatic dihydroxy compound and/or a carbonic diester prepared in the absence of an ester exchange catalyst to polycondensation steps of two lines each equipped with three vertical reactors connected in series and one horizontal reactor, and at the same time, continuously conducting polycondensation reaction in the presence of an ester exchange catalyst.
    Type: Grant
    Filed: May 22, 2007
    Date of Patent: August 16, 2011
    Assignee: Mitsubishi Chemical Corporation
    Inventors: Ryuuji Uchimura, Toshiyuki Hamano, Kazuyuki Takahashi, Masaaki Miyamoto, Kodama Miyamoto, legal representative, Taro Miyamoto, legal representative, Hideo Miyamoto, legal representative, Hanae Miyamoto, legal representative
  • Patent number: 7998420
    Abstract: The invention relates to a method and a device for producing vacuum in the production of polyesters and copolyesters; unrectified vapors from at least one esterification or transesterification stage is preferably used as a driving medium in gas jet pumps for producing the vacuum in one or more polycondensation stages.
    Type: Grant
    Filed: September 16, 2008
    Date of Patent: August 16, 2011
    Assignee: Lurgi Zimmer GmbH
    Inventors: Michael Reisen, Gerald Kriesche
  • Patent number: 7999058
    Abstract: A method for producing an aromatic polymer includes polycondensing an aromatic compound represented by formula (I) in the presence of a nickel complex containing a phosphine compound represented by formula (II), wherein, Ar denotes an aromatic ring containing organic group, which aromatic ring may contain an oxygen atom and/or a nitrogen atom; R denotes a monovalent group containing a hydrocarbon group; k is an integer of 1 or more; X denotes an halogen atom, a nitro group or a group represented by —SO3Q, wherein Q denotes a monovalent hydrocarbon group; Y denotes O, S, an imino group, an ethenylene group, or an ethynylene group; n denotes 0 or 1; and M denotes H, —B(OQ1)2, —Si(Q2)3, —Sn(Q3)3 or —Z1(Z2)m, wherein Q1 denotes H or a monovalent hydrocarbon group; Q2 and Q3 denote a monovalent hydrocarbon group; Z1 denotes a metal atom or a metal ion; Z2 denotes a counter ion; and m is an integer of 0 or higher; wherein, R1 denotes a monovalent hydrocarbon group, and R2 denotes a divalent hydrocarbon gro
    Type: Grant
    Filed: February 13, 2007
    Date of Patent: August 16, 2011
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Tsutomu Yokozawa, Hideyuki Higashimura
  • Patent number: 7999059
    Abstract: The invention relates to an optical film containing aromatic polymer which shows high solubility to solvents, and methods for production thereof. Further, the invention also relates to an optical laminate, a polarizing plate, and an image display device each using the optical film. The optical film may be attained by using polyester with a specific structure. The polyester with a specific structure may be obtained by condensation polymerization of bisphenol compound(s) and dicarboxylic acid compound(s) with biphenyl structure, and preferably has no halogen atom in its chemical structure. The optical film of the invention advantageously has not only high solubility in solvents but also a high level of heat resistance and birefringence producing capability. When the content of the biphenyl structure is high, the optical film of the invention can also have large wavelength dispersion of birefringence.
    Type: Grant
    Filed: November 6, 2008
    Date of Patent: August 16, 2011
    Assignee: Nitto Denko Corporation
    Inventors: Tomoyuki Hirayama, Toshiyuki Iida, Yutaka Ohmori, Miyuki Kurogi, Hisae Shimizu
  • Patent number: 7999055
    Abstract: The present invention can provide a polycarbonate resin containing a structural unit represented by the following formula (1). wherein R represents one selected from an alkyl group having 1 to 9 carbon atoms, an aryl group having 6 to 12 carbon atoms, an alkenyl group having 2 to 5 carbon atoms, an alkoxy group having 1 to 5 carbon atoms, an aralkyl group having 7 to 17 carbon atoms, and halogen; and n represents the number of substituting R's on a benzene ring and is an integer of 0 to 4. Y represents an alkylene group having 1 to 4 carbon atoms; and p is an integer of 0 to 4.
    Type: Grant
    Filed: May 19, 2008
    Date of Patent: August 16, 2011
    Assignee: Mitsubishi Gas Chemical Company, Inc
    Inventors: Shu Yoshida, Toshiaki Yamada
  • Patent number: 7994275
    Abstract: The disclosure defined by this invention provides a method for extruding thermoplastic polymers which includes the step of creating high pressure steam in the extruding apparatus so as to prevent scorching and to solubilize contaminants. The method can be used in a neutralization step of ionomers in an extrusion process to obtain an extrudate having good light transmission and improved impact resistance.
    Type: Grant
    Filed: November 12, 2009
    Date of Patent: August 9, 2011
    Inventors: Nelson Bolton, Edwin Bolton, W. Novis Smith, Elizabeth Wimmer
  • Patent number: 7985823
    Abstract: The invention aims at providing a process for the production of polycarbonate resin which is suppressed in discoloration and reduced in the content of crystalline foreign substance, gel, and so on.
    Type: Grant
    Filed: September 25, 2007
    Date of Patent: July 26, 2011
    Assignee: Mitsubishi Chemical Corporation
    Inventors: Kazuyuki Takahashi, Kouji Iwaki, Ryuuji Uchimura
  • Patent number: 7985824
    Abstract: A method of making a polycarbonate is described. The method comprises reacting an activated diaryl carbonate and a dihydroxy compound at a reaction temperature in a reactor to form a reaction mixture wherein the reactor comprises a heated cover and an open space between the cover and the reaction mixture. The dihydroxy compound comprises a vapor pressure greater than or equal to 0.01 kiloPascals at the reaction temperature and the temperature of the open space in the reactor, the temperature of the cover, or the temperature of the open space and the cover is greater than or equal to the melt temperature of the monomer having the highest melt temperature.
    Type: Grant
    Filed: March 24, 2010
    Date of Patent: July 26, 2011
    Assignee: Sabic Innovative Plastics IP B.V.
    Inventors: Jorge Garcia Agudo, Ignacio Vic Fernandez, David Domingo Fuster, Miguel Angel Salomon
  • Patent number: 7985825
    Abstract: Ethers of aromatic acids are produced from halogenated aromatic acids in a reaction mixture containing a halogenated aromatic acid such as is described by the structure of Formula II wherein each X is independently Cl, Br or I; the reaction mixture further comprising; (i) a polar protic solvent, a polar aprotic solvent or an alcoholic solvent containing the alcoholate RO-M+ (wherein M is Na or K), wherein the polar protic solvent, polar aprotic solvent or alcoholic solvent is either ROH or is a solvent that is less acidic than ROH; (ii) a copper (I) or copper (II) source; and (iii) an amino acid ligand that coordinates to copper, wherein the ligand comprises an amino acid in which the amine nitrogen and the carboxyl carbon are separated by no more than two carbon atoms.
    Type: Grant
    Filed: December 18, 2007
    Date of Patent: July 26, 2011
    Assignee: E. I. du Pont de Nemours and Company
    Inventor: Joachim C. Ritter
  • Patent number: 7977447
    Abstract: A method for forming a monomeric carbonate includes the step of combining a monofunctional alcohol or a difunctional diol with an ester-substituted diaryl carbonate to form a reaction mixture. Similarly, a method for forming a monomeric ester includes the step of combining a monofunctional carboxylic acid or ester with an ester-substituted diaryl carbonate to form a reaction mixture. These methods further include the step of allowing the reaction mixtures to react to form a monomeric carbonate or a monomeric ester, respectively.
    Type: Grant
    Filed: December 24, 2008
    Date of Patent: July 12, 2011
    Assignee: Sabic Innovative Plastics IP B.V.
    Inventors: Hatem Abdallah Belfadhel, Hans-Peter Brack, Ricardo Godoy-Lopez, Dennis James Patrick Maria Willemse
  • Patent number: 7973127
    Abstract: The present invention provides a method for producing a polytetrafluoroethylene fine powder, which comprises emulsion polymerizing tetrafluoroethylene in the presence of an aqueous medium, a fluorinated surfactant and a radical polymerization initiator to produce an aqueous polytetrafluoroethylene emulsion, mixing and coagulating the aqueous emulsion to separate a polytetrafluoroethylene fine powder, and then drying the polytetrafluoroethylene fine powder in a wet state in an atmosphere containing ammonia.
    Type: Grant
    Filed: September 28, 2010
    Date of Patent: July 5, 2011
    Assignee: Asahi Glass Company, Limited
    Inventors: Shinya Higuchi, Yasuhiko Matsuoka, Shigeki Kobayashi