Patents Examined by Thuan Dinh Dang
  • Patent number: 8071828
    Abstract: In a process for producing xylene by transalkylation of a C9+ aromatic hydrocarbon feedstock, the feedstock, at least one C6-C7 aromatic hydrocarbon and hydrogen are supplied to at least one reaction zone containing at least first and second catalyst beds located such that the feedstock and hydrogen contact the first bed before contacting the second bed. The first catalyst bed comprises a first catalyst composition comprising a molecular sieve having a Constraint Index in the range of about 3 to about 12 and at least one metal or compound thereof of Groups 6-10 of the Periodic Table of the Elements, and the second catalyst bed comprises a second catalyst composition comprising a molecular sieve having a Constraint Index less than 3.
    Type: Grant
    Filed: December 20, 2010
    Date of Patent: December 6, 2011
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Chunshe Cao, Michel Molinier
  • Patent number: 8071829
    Abstract: A process is disclosed for the alkylation of aromatics by charging a hydrocarbon feed containing aromatic hydrocarbons and olefinic hydrocarbons to a distillation column for separation into at least one fraction; removing an aromatics/olefin stream containing at least a portion of the aromatic hydrocarbons and at least a portion of the olefinic hydrocarbons; charging the aromatics/olefin stream to an alkylation reactor, operated at a temperature in the range of from about 80° C. to about 220° C., for alkylation of at least a portion of the aromatic hydrocarbons with the olefinic hydrocarbons; recycling at least a portion of the resulting reactor effluent to the distillation column; and removing a product stream containing alkylated aromatics from the distillation column.
    Type: Grant
    Filed: February 20, 2009
    Date of Patent: December 6, 2011
    Assignee: ConocoPhillips Company
    Inventors: Bradley M. Taylor, Barbara A. Todd
  • Patent number: 8067658
    Abstract: An isomerization process is disclosed including contacting a n-hexane hydrocarbon feed containing less than about 10 volume % naphthenic hydrocarbons with a catalyst to produce an iso-hexane containing product; wherein the catalyst is prepared by: a) incorporating tungsten on a zirconium hydroxide solid; b) drying and calcining the tungsten impregnated zirconium hydroxide; c) sizing the dried and calcined material to particle sizes between about 150 and about 600 microns; d) incorporating a Group VIII metal selected from the group consisting of nickel, platinum and palladium, and combinations thereof, on the sized material; e) drying and calcining the Group VIII metal impregnated tungsten/zirconia material; and f) contacting the second dried and calcined material with hydrogen in a reducing environment to form the catalyst which contains tungsten, zirconia and a Group VIII metal selected from the group consisting of nickel, platinum and palladium, and combinations thereof.
    Type: Grant
    Filed: January 23, 2009
    Date of Patent: November 29, 2011
    Assignee: ConocoPhillips Company
    Inventors: Bradley M. Taylor, David E. Simon
  • Patent number: 8063259
    Abstract: A molecular sieve catalyst useful in the conversion of hydrocarbons containing niobium is disclosed, along with a process for the disproportionation of toluene to benzene and xylene using such catalyst.
    Type: Grant
    Filed: August 18, 2008
    Date of Patent: November 22, 2011
    Assignee: Fina Technology, Inc.
    Inventors: James R. Butler, Rosa Hall, Xin Xiao
  • Patent number: 8063260
    Abstract: The present invention relates to a solid phosphoric acid catalyst and a process for conversion of hydrocarbons using a solid phosphoric acid catalyst. The solid phosphoric acid catalyst comprises silicon orthophosphate, and has a silicon orthophosphate to silicon pyrophosphate ratio of at least about 5:1. The total pore volume of the solid phosphoric acid catalyst is at least about 0.17 cm3 per gram of catalyst, of which at least about 0.15 cm3 per gram is contributed by pores with diameter of at least about 10,000 ?.
    Type: Grant
    Filed: July 7, 2009
    Date of Patent: November 22, 2011
    Assignee: Sud-Chemie Inc.
    Inventors: Ling Xu, Wayne Turbeville, Gregory A. Korynta, Jeffrey L. Braden
  • Patent number: 8058494
    Abstract: A process for the production of phenylalkanes comprising at least two catalytic alkylation reactors placed in parallel among which are present in reaction zones that each contain at least one acidic solid catalyst, whereby n is greater than or equal to 2, is described. One of the reactors carries out the alkylation of at least one aromatic compound by at least one olefin that has 9 to 16 atoms. An olefin fraction is introduced at the inlet of each of the reaction zones of the reactor that operates in alkylation mode. While one of the reactors carries out the alkylation, the other reactor carries out the reactivation of each catalyst, partially deactivated, that it contains. The functions of each reactor are switched regularly so as to limit the deactivation of catalysts in each of the reactors. The phenylalkanes that are obtained by the process according to the invention are particularly suitable for the production of detergents.
    Type: Grant
    Filed: October 4, 2005
    Date of Patent: November 15, 2011
    Assignee: IFP Energies Nouvelles
    Inventors: Emmanuelle Guillon, Eric Sanchez
  • Patent number: 8058496
    Abstract: Xylene and ethylbenzene isomerization process is catalyzed by the UZM-35 family of crystalline aluminosilicate zeolites represented by the empirical formula: Mmn+Rr+Al(1-x)ExSiyOz where M represents a combination of potassium and sodium exchangeable cations, R is a singly charged organoammonium cation such as the dimethyldipropylammonium cation and E is a framework element such as gallium. These UZM-35 zeolites are active and selective in the isomerization of xylenes and ethylbenzene.
    Type: Grant
    Filed: March 31, 2010
    Date of Patent: November 15, 2011
    Assignee: UOP LLC
    Inventors: Paula L. Bogdan, Deng-Yang Jan, Christopher P. Nicholas, Jaime G. Moscoso
  • Patent number: 8058495
    Abstract: A new family of crystalline aluminosilicate zeolites has been synthesized. These zeolites are represented by the empirical formula. Mmn+Rr+Al(1-x)ExSiyOz where M represents a combination of potassium and sodium exchangeable cations, R is a singly charged organoammonium cation such as the propyltrimethylammonium cation and E is a framework element such as gallium. These zeolites are similar to MWW but are characterized by unique x-ray diffraction patterns and compositions and have catalytic properties for carrying out alkylation processes.
    Type: Grant
    Filed: June 9, 2011
    Date of Patent: November 15, 2011
    Assignee: UOP LLC
    Inventors: Deng-Yang Jan, Jaime G. Moscoso
  • Patent number: 8053617
    Abstract: A new family of crystalline aluminosilicate zeolites has been synthesized. These zeolites are represented by the empirical formula. Mmn+Rr+Al(1-x)ExSiyOz where M represents a combination of potassium and sodium exchangeable cations, R is a singly charged organoammonium cation such as the propyltrimethylammonium cation and E is a framework element such as gallium. These zeolites are similar to MWW but are characterized by unique x-ray diffraction patterns and compositions and have catalytic properties for carrying out various hydrocarbon conversion processes.
    Type: Grant
    Filed: June 9, 2011
    Date of Patent: November 8, 2011
    Assignee: UOP LLC
    Inventors: Jaime G. Moscoso, Deng-Yang Jan
  • Patent number: 8053618
    Abstract: A new family of crystalline aluminosilicate zeolitic compositions, UZM-35 compositions, has been synthesized. These zeolitic compositions are represented by the empirical formula. Mmn+Rr+Al1-xExSiyOz where M represents a combination of potassium and sodium exchangeable cations, R is a singly charged organoammonium cation such as the dimethyldipropylammonium cation and E is a framework element such as gallium. These compositions comprise a MSE zeolite, a MFI zeolite and an ERI zeolite. The compositions are similar to MCM-68 but are characterized by unique x-ray diffraction patterns and have catalytic properties for carrying out various hydrocarbon conversion processes.
    Type: Grant
    Filed: June 2, 2011
    Date of Patent: November 8, 2011
    Assignee: UOP LLC
    Inventors: Jaime G Moscoso, Deng-Yang Jan
  • Patent number: 8053616
    Abstract: A method comprising providing a halogen stream; providing a first alkane stream; reacting at least a portion of the halogen stream with at least a portion of the first alkane stream to form a halogenated stream, wherein the halogenated stream comprises alkyl monohalides, alkyl polyhalides, and a hydrogen halide; providing a second alkane stream; and reacting at least a portion of the second alkane stream with at least a portion of the alkyl polyhalides to create at least some additional alkyl monohalides.
    Type: Grant
    Filed: July 1, 2009
    Date of Patent: November 8, 2011
    Assignee: GRT, Inc.
    Inventors: Sagar B. Gadewar, Michael D. Wyrsta, Philip Grosso, Aihua Zhang, Eric W. McFarland, Zachary J. A. Komon, Jeffrey H. Sherman
  • Patent number: 8049051
    Abstract: The present invention provides a process for producing aromatic hydrocarbons at a sufficiently high yield, from a light hydrocarbon containing mainly hydrocarbons having 7 or fewer carbon atoms. The process of the present invention comprises bringing a feedstock containing mainly light hydrocarbons having 2 to 7 carbon atoms into contact with a catalyst composition comprising at least a gallium-containing crystalline aluminosilicate wherein a reaction step for converting the feedstock to aromatic hydrocarbons comprises at least two or more reaction layers formed of the catalyst composition, arranged in series and heating means arranged either between or in the reaction layers, the amount of the catalyst in the first stage reaction layer is 30 percent by volume or less of the total catalyst volume, and/or the yield of the aromatics in the product outflowing from the first reaction layer is from 0.5 to 30 percent by mass.
    Type: Grant
    Filed: August 2, 2007
    Date of Patent: November 1, 2011
    Assignees: Nippon Oil Corporation, Chiyoda Corporation
    Inventors: Yushi Suzuki, Tsuyoshi Asano
  • Patent number: 8044253
    Abstract: A process for aromatic transalkylation and olefin reduction of a feed stream is disclosed. Transalkylation conditions provide a product having increased xylene concentration and reduced olefin concentration relative to the feed. The process may be used in a xylene production facility to minimize or avoid the necessity of feedstock pretreatment such as hydrotreating, hydrogenation, or treating with clay and/or molecular sieves.
    Type: Grant
    Filed: November 1, 2010
    Date of Patent: October 25, 2011
    Assignee: UOP LLC
    Inventors: Antoine Negiz, Edwin P. Boldingh, James E. Rekoske, Eric J. Baker
  • Patent number: 8034988
    Abstract: A process for alkylation of propylene, the process including: contacting a stream comprising propylene and propane with sulfuric acid in a first reaction zone under conditions to form propylene sulfate esters; contacting the propylene sulfate esters with isoparaffin and sulfuric acid in an alkylation reaction zone under conditions to react the propylene sulfate esters and the isoparaffin to form a reactor effluent comprising an acid phase and a hydrocarbon phase comprising unreacted isoparaffin and alkylate product; separating the hydrocarbon phase from the sulfuric acid; separating the hydrocarbon phase to form a fraction comprising unreacted isoparaffin and a fraction comprising the alkylate product.
    Type: Grant
    Filed: September 19, 2008
    Date of Patent: October 11, 2011
    Assignee: Catalytic Distillation Technologies
    Inventors: Mitchell E. Loescher, William M. Cross, Jr., Lawrence A. Smith, Jr.
  • Patent number: 8034987
    Abstract: It is an object of the present invention to provide an improved process whereby the yield structure of the components can be varied by a simple method, and the products can be produced stably and efficiently in a process for producing propylene and aromatic hydrocarbons from a hydrocarbon feedstock containing C4-12 olefins using a medium pore diameter zeolite-containing catalyst. A process for producing is disclosed which comprises a propylene production step wherein a specific zeolite catalyst is used to remove a C4+ hydrocarbon component from a reaction mixture, and part of the hydrocarbon component is recycled as necessary without modification, and an aromatic hydrocarbon production step wherein all or a part of the C4+ hydrocarbon component is used as the raw material.
    Type: Grant
    Filed: January 12, 2007
    Date of Patent: October 11, 2011
    Assignee: Asahi Kasei Chemicals Corporation
    Inventors: Mitsuhiro Sekiguchi, Yoshikazu Takamatsu
  • Patent number: 8030532
    Abstract: A method for the production of styrene comprising reacting toluene and syngas in one or more reactors is disclosed.
    Type: Grant
    Filed: February 24, 2011
    Date of Patent: October 4, 2011
    Assignee: Fina Technology, Inc
    Inventors: Joseph Pelati, James R. Butler
  • Patent number: 8022263
    Abstract: This invention is drawn to a process for isomerizing a non-equilibrium mixture of xylenes and ethylbenzene using a catalyst comprising a zeolite having specific particle-size characteristics, a platinum-group metal and a silica binder. A relatively minimal amount of hydrogen is supplied to the process on a once-through basis, resulting in low saturation of aromatics while achieving effective xylene isomerization with reduced processing costs.
    Type: Grant
    Filed: November 19, 2008
    Date of Patent: September 20, 2011
    Assignee: UOP LLC
    Inventors: James E. Rekoske, Patrick C. Whitchurch, Robert B. Larson
  • Patent number: 8022262
    Abstract: A new family of crystalline aluminosilicate zeolitic compositions, UZM-35 compositions, has been synthesized. These zeolitic compositions are represented by the empirical formula. Mmn+Rr+Al(1-x)ExSiyOz where M represents a combination of potassium and sodium exchangeable cations, R is a singly charged organoammonium cation such as the dimethyldipropylammonium cation and E is a framework element such as gallium. These compositions comprise a MSE zeolite, a MFI zeolite and an ERI zeolite. The compositions are similar to MCM-68 but are characterized by unique x-ray diffraction patterns and have catalytic properties for carrying out various hydrocarbon conversion processes.
    Type: Grant
    Filed: June 21, 2010
    Date of Patent: September 20, 2011
    Assignee: UOP LLC
    Inventors: Jaime G. Moscoso, Deng-Yang Jan
  • Patent number: 8017824
    Abstract: This invention relates to hydrocarbon conversion processes using UZM-29 and UZM-29HS zeolitic compositions. The UZM-29 zeolites are represented by the empirical formula: Mmn+R+rAl1?xExSiyOz UZM-29 has the PHI structure type topology but is thermally stable up to a temperature of at least 350° C. UZM-29HS is a high silica version of UZM-29 and is represented by the empirical formula: M1?n+aAl(1?x)ExSiyOz. Examples of the hydrocarbon conversion processes are isomerization of alkanes, especially butane and the conversion of oxygenates to olefins.
    Type: Grant
    Filed: August 4, 2009
    Date of Patent: September 13, 2011
    Assignee: UOP LLC
    Inventors: Susan C. Koster, Jaime G. Moscoso
  • Patent number: RE42832
    Abstract: A method is disclosed for reforming organics into shorter-chain unsaturated organic compounds. A molten metal bath is provided which can cause homolytic cleavage of an organic component of an organic-containing feed. The feed is directed into the molten metal bath at a rate which causes partial homolytic cleavage of an organic component of the feed. Conditions are established and maintained in the reactor to cause partial homolytic cleavage of the organic component to produce unsaturated organic compounds, as products of the homolytic cleavage, which are discharged from the molten metal bath.
    Type: Grant
    Filed: July 10, 2003
    Date of Patent: October 11, 2011
    Assignee: Quantum Catalytics, L.L.C.
    Inventors: Christopher J. Nagel, Thomas P. Griffin, Thomas A. Kinney, Kevin A. Sparks