Patents Examined by Timothy Meeks
  • Patent number: 8936831
    Abstract: The invention provides a method for dispersing particles within a reaction field, the method comprising confining the particles to the reaction field using a standing wave. The invention also provides a system for coating particles, the system comprising a reaction zone; a means for producing fluidized particles within the reaction zone; a fluid to produce a standing wave within the reaction zone; and a means for introducing coating moieties to the reaction zone. The invention also provides a method for coating particles, the method comprising fluidizing the particles, subjecting the particles to a standing wave; and contacting the subjected particles with a coating moiety.
    Type: Grant
    Filed: February 3, 2012
    Date of Patent: January 20, 2015
    Assignee: UChicago Argonne, LLC
    Inventors: Jie Li, Yung Y. Liu
  • Patent number: 8932680
    Abstract: Method of making a golf ball. A blend of a first highly neutralized acid polymer, a second highly neutralized acid polymer, and an ionomer-based masterbatch comprising an ionomer resin and an additive is used to form a layer of a golf ball. A second layer that essentially encloses the blend-containing layer then is formed.
    Type: Grant
    Filed: July 29, 2011
    Date of Patent: January 13, 2015
    Assignee: NIKE, Inc.
    Inventors: Hideyuki Ishii, Yasushi Ichikawa, Chen-Tai Liu, Arthur Molinari
  • Patent number: 8932670
    Abstract: A method of making a glass article with an anti-smudge surface includes providing a glass article with a target surface. The method includes providing a coating solution consisting essentially of a fluorosilane compound and a solvent that is miscible with the fluorosilane compound. The method includes spray-coating the target surface with the coating solution while controlling the spray-coating to form a coating layer having a thickness in a range from 1 to 20 nm on the target surface.
    Type: Grant
    Filed: November 29, 2010
    Date of Patent: January 13, 2015
    Assignee: Corning Incorporated
    Inventors: John William Botelho, Jeffrey John Domey, Linda Frances Reynolds-Heffer, Lu Zhang
  • Patent number: 8916241
    Abstract: A can coating machine control system includes a coating control signal that functions as a go/no-go signal based on a plurality of monitored conditions such as can in position, vacuum pressure, gun in position, guard in position and speed condition. Local pressure regulation of the coating material in the spray gun is provided along with optional control of the material temperature. Local pressure regulation allows for optional spray weight control based on a wrap number derived from speed and gun spray durations. A CAN to CAN network buffer is provided as well for primary network isolation. A gun control circuit may be used to select specific gun drive signals and to adjust gun drive signals based on real-time feedback of the actual spray duration.
    Type: Grant
    Filed: October 14, 2013
    Date of Patent: December 23, 2014
    Assignee: Nordson Corporation
    Inventors: James M. Khoury, Charles Nagy, Stephen G. Nemethy, Mark J. Ignatius
  • Patent number: 8911834
    Abstract: The invention relates to a coating composition consisting of an oxide compound. The invention also relates to a method for producing a coating composition consisting of an oxide compound and to a method for coating substrates composed of metal, semiconductor, alloy, ceramic, quartz, glass or glass-type materials with coating compositions of this type. The invention further relates to the use of a coating composition according to the invention for coating metal, semiconductor, alloy, ceramic, quartz, glass and/or glass-type substrates.
    Type: Grant
    Filed: November 4, 2008
    Date of Patent: December 16, 2014
    Assignee: Leibniz-Institut fuer Neue Materialien gemeinnuetzige GmbH
    Inventors: Oral Cenk Aktas, Michael Veith, Sener Albayrak, Benny Siegert, Yann Patrick Wolf
  • Patent number: 8900658
    Abstract: The invention relates to a method for coating metallic effect pigments with silicon oxide, in which alkoxysilane(s) and/or silicon halide(s) in organic solvent are reacted with water in the presence of metallic effect pigments, where the reaction includes at least two steps, where (a) the reaction is carried out with addition of acid in a first step and with addition of base in a second step or where (b) the reaction is carried out with addition of base in a first step and with addition of acid in a second step. The invention further relates to the coated metallic effect pigments producible by way of the method of the invention, and also to the use thereof.
    Type: Grant
    Filed: February 4, 2011
    Date of Patent: December 2, 2014
    Assignee: Eckart GmbH
    Inventors: Phu Qui Nguyen, Pär Winkelmann
  • Patent number: 8900659
    Abstract: The present invention relates to a method of forming copper nanowires with a metallic coating. In a preferred embodiment, the metallic coating is copper. Due to the metal coating, the nanowires become magnetically guidable and chemically stable. As such, the nanowires can be used to form nanomesh. Further, the nanowire and nanomesh of the present invention can be used as transparent electrodes that are used in TV, PC, touch-control, and solar industries.
    Type: Grant
    Filed: July 19, 2011
    Date of Patent: December 2, 2014
    Assignee: National University of Signapore
    Inventors: Hua Chun Zeng, Shengmao Zhang, Yu Chang, Mei Ling Lye
  • Patent number: 8889226
    Abstract: A method of bonding a metal to a substrate is disclosed herein. The method involves forming a nano-brush on a surface of the substrate, where the nano-brush includes a plurality of nano-wires extending above the substrate surface. In a molten state, the metal is introduced onto the substrate surface, and the metal surrounds the nano-wires. Upon cooling, the metal surrounding the nano-wires solidifies, and during the solidifying, at least a mechanical interlock is formed between the metal and the substrate.
    Type: Grant
    Filed: December 2, 2011
    Date of Patent: November 18, 2014
    Assignee: GM Global Technology Operations LLC
    Inventors: Michael J. Walker, Bob R. Powell, Jr.
  • Patent number: 8883261
    Abstract: A method for creating an artifact for use with an optical three-dimensional measuring system includes steps of: (a) providing an artifact that comprises an inspection surface, which artifact is configured to be scanned by a non-contact sensor included in the optical three-dimensional measuring system, which artifact comprises at least one of a substantially spherical body and a turbine engine component, and which inspection surface comprises a surface of one of the substantially spherical body and the turbine engine component; (b) heating the artifact to a predetermined temperature; and (c) coating the inspection surface of the heated artifact with an approximately uniform coating of dry film lubricant.
    Type: Grant
    Filed: January 30, 2012
    Date of Patent: November 11, 2014
    Assignee: United Technologies Corporation
    Inventors: Jesse R. Boyer, Jeffry K. Pearson, Randall W. Joyner
  • Patent number: 8883253
    Abstract: Brominated butadiene polymers are recovered from solution and formed into particles by spraying the solution onto a heated, mechanically agitated bed of seed particles. The droplets contact the seed particles in the bed and form a polymer layer on the outside of the seed particles, thereby enlarging them. The solvent is removed from the droplets after they make contact with seed particles in the bed. The process allows for the simultaneous removal of solvent and formation of somewhat large particles. The process forms at most small amounts of agglomerates and fines.
    Type: Grant
    Filed: August 18, 2009
    Date of Patent: November 11, 2014
    Assignee: Dow Global Technologies LLC
    Inventors: Douglas C. Greminger, Brian D. Scherzer
  • Patent number: 8883264
    Abstract: Methods for powder coating that include applying a powder coating composition to a substrate via an electrostatic gun. The powder coating composition includes a mixture of two or more materials having different densities, such as a mixture of aerogel particles and fluoropolymer-containing particles. The electrostatic gun can have a high-voltage generator that generates a negative polarity voltage between about 0 KV and about 100 KV during application of the powder coating composition, and the electrostatic gun can have a round spray nozzle. Methods of making fuser members using such powder coating methods, fuser members prepared by such methods, and methods of preparing low gloss images using such fuser members.
    Type: Grant
    Filed: November 1, 2012
    Date of Patent: November 11, 2014
    Assignee: Xerox Corporation
    Inventors: Suxia Yang, Qi Zhang, Edward G Zwartz, Yu Qi, Gordon Sisler, David Charles Irving
  • Patent number: 8877292
    Abstract: The bicycle wheel manufactured by the method of the present invention is made of composite material and has two opposite braking surfaces, each of which is coated with a fluoride polymer layer. Specifically, the braking surfaces are sand blasted to remove a releasing agent layer coated on the wheel. The wheel is, thereafter, placed in a spraying machine at about 100 degree Celsius and then the braking surfaces are spray-coated with a material selected from the group consisting of polytetrafluoro ethylene, fluoride ethylene-propylene copolymer, polyfluoroalkyl, ethylene-tetrafluoro ethylene copolymer and the mixture thereof until a thickness of the material is bigger than 0.4 cm. Thereafter, the wheel is gradually heated to make the material set and form the fluoride polymer layers.
    Type: Grant
    Filed: July 29, 2013
    Date of Patent: November 4, 2014
    Assignee: Carbotec Industrial Co., Ltd.
    Inventor: Michael Lee
  • Patent number: 8877287
    Abstract: The present invention relates to a method for manufacturing an anti-reflective coating film. The method for manufacturing an anti-reflective coating film is used to form an anti-reflective coating film exhibiting more improved interface adhesion and scratch resistance and excellent anti-reflective effect by a simple process.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: November 4, 2014
    Assignee: LG Chem, Ltd.
    Inventors: Heon Kim, Yeong-Rae Chang
  • Patent number: 8871299
    Abstract: A method for producing solid particles having a silica coating, by: dispersing the solid particles to be coated in an aqueous medium to produce a solid particle dispersion, adjusting the pH of the solid particle dispersion by a buffer system to produce a buffered solid particle dispersion, and adding an alkaline silicate solution to the buffered solid particle dispersion to form the silica coating on the solid particles during a coating period. The amounts of buffer system and alkaline silicate solution are selected such that the pH of the buffered solid particle dispersion before the addition of the alkaline silicate solution is at least 7.0 and after completion of the addition of the alkaline silicate solution is at most 11.0.
    Type: Grant
    Filed: November 30, 2010
    Date of Patent: October 28, 2014
    Assignee: Giesecke & Devrient GmbH
    Inventors: Johann Kecht, Stephan Steinlein
  • Patent number: 8871300
    Abstract: A method for making a carbon nanotube based composite is provided. In the method, carriers, solution containing metal ions, and a carboxylic acid solution are mixed to form a mixed solution containing a complex compound. A reducing agent is added into the mixed solution. The metal ions are reduced to metal particles absorbed on the surface of the carriers. The carriers having the metal particles absorbed thereon are purified to obtain the carbon nanotube based composite.
    Type: Grant
    Filed: March 22, 2011
    Date of Patent: October 28, 2014
    Assignees: Tsinghua University, Hon Hai Precision Industry Co., Ltd.
    Inventors: Jian-Wei Guo, Li-Na Zhang, Li Wang, Cheng Wang, Xiang-Ming He, Zhi-Xiang Liu
  • Patent number: 8865263
    Abstract: Compositions and methods for reduction in adhesion between wet paper web and roll surfaces in papermaking process are disclosed. The method is particularly useful for improvements in press section roll release.
    Type: Grant
    Filed: August 22, 2011
    Date of Patent: October 21, 2014
    Assignee: Solenis Technologies, L.P.
    Inventors: Davit E. Sharoyan, Tien-Feng Ling, Scott T. Schnelle
  • Patent number: 8859050
    Abstract: A method for forming a nanoporous film pattern on a substrate comprising imparting differential surface energy to a surface of a substrate to define first areas having a first surface energy conducive to maintenance of a nanoporous film thereon and second areas having a second surface energy non-conducive to maintenance of a nanoporous film thereon, said first and second areas defining a differential surface energy pattern on the substrate; depositing a nanoporous film precursor onto the differential surface energy pattern; and curing the nanoporous film precursor to form the nanoporous film pattern.
    Type: Grant
    Filed: March 14, 2011
    Date of Patent: October 14, 2014
    Assignee: The Curators of the University of Missouri
    Inventors: Venumadhav Korampally, Shubhra Gangopadhyay, Keshab Gangopadhyay
  • Patent number: 8858873
    Abstract: A nickel-based super alloy includes, by weight, about 1.5% to about 5.5% chromium, about 8% to about 12% aluminum, about 4% to about 8% tantalum, about 1.5% to about 5.5% tungsten, less than about 1% of one or more of elements selected from a group consisting of carbon, boron, zirconium, yttrium, hafnium, and silicon, and a balance of nickel.
    Type: Grant
    Filed: November 13, 2012
    Date of Patent: October 14, 2014
    Assignee: Honeywell International Inc.
    Inventor: Don Mittendorf
  • Patent number: 8859035
    Abstract: A method of enhancing the flowability of a powder. The powder is defined by a plurality of particles having an initial level of inter-particle forces between each particle. The method comprises: treating the powder, wherein the level of inter-particle forces between each particle is substantially decreased from the initial level; fluidizing the treated powder; flowing the treated powder into a plasma arc chamber; the plasma arc chamber generating a plasma arc; and the plasma arc chamber operating on the treated powder using the generated plasma arc. Preferably, the inter-particle forces are decreased by coating the particles with an organic surfactant.
    Type: Grant
    Filed: December 7, 2010
    Date of Patent: October 14, 2014
    Assignee: SDCmaterials, Inc.
    Inventor: David Leamon
  • Patent number: 8859055
    Abstract: The invention provides a method for patterning a flexible substrate. The method for patterning a flexible substrate includes providing a carrier substrate. A release layer is formed on the carrier substrate. A flexible substrate film is formed on the release layer. A plurality of UV blocking mask patterns is formed covering various portions of the flexible substrate film and the release layer. A UV lighting process is performed to expose the flexible substrate film and the release layer not covered by the UV blocking mask patterns, to a UV light. A debonding step is performed so that the various portions of the flexible substrate film directly above the various portions of the release layer, which were not exposed to the UV light, are separated from the carrier substrate.
    Type: Grant
    Filed: May 9, 2011
    Date of Patent: October 14, 2014
    Assignee: Industrial Technology Research Institute
    Inventors: Pao-Ming Tsai, Yu-Yang Chang, Liang-You Jiang, Yu-Jen Chen