Patents Examined by Tri V. Nguyen
  • Patent number: 11976216
    Abstract: An electrically conductive and corrosion resistant graphene-based coating composition, including a binder, high-pressure airless-sprayed expanded graphene stacks, carbon fibers, and a dispersing agent, wherein the graphene-based coating composition has an electrical conductivity of at least 2 S/cm and a pull-off adhesion of at least 2 MPa.
    Type: Grant
    Filed: November 5, 2021
    Date of Patent: May 7, 2024
    Assignee: THE BOEING COMPANY
    Inventors: Vijaykumar S. Ijeri, Stephen P. Gaydos, Patrick J. Kinlen, Priyanka G. Dhirde, Anand Khanna
  • Patent number: 11976205
    Abstract: A process for forming a conductive hemp-based ink comprising carbonizing hemp and reducing the particle size of said hemp via a milling process to between 2 and 5 microns, wherein said reduced size hemp particles are combined with at least one aqueous carrier to produce an ink, and wherein said ink is conductive.
    Type: Grant
    Filed: June 9, 2021
    Date of Patent: May 7, 2024
    Assignee: Thomas Jefferson University
    Inventor: Mark Sunderland
  • Patent number: 11970627
    Abstract: The invention relates to a composition containing at least the two following components: a) a silver carboxylate, and b) a terpene, an ink for ink jet printing and a paste for printing with a screen printing method, wherein the ink or the paste, respectively, each contains the composition according to the invention. The invention also relates to a method for producing a pattern on a substrate, at least comprising the following steps: A) providing a substrate and a composition containing at least one silver carboxylate and one terpene; B) applying the composition to the substrate while preserving a precursor with the pattern; C) treating the precursor with the pattern according to a treatment step that is selected from the group consisting of: a) at a temperature of more than 200° C. for at least 10 minutes, wherein the treatment is preferably carried out in an atmosphere of air; b) a photonic sintering process; c) a combination of a) and b), wherein the substrate to which the pattern is applied is preserved.
    Type: Grant
    Filed: January 21, 2020
    Date of Patent: April 30, 2024
    Assignee: HERAEUS DEUTSCHLAND GMBH & CO. KG
    Inventors: Kai-Ulrich Boldt, Peter Kraemer, Susanne Behl
  • Patent number: 11965116
    Abstract: Aspects of the present disclosure provide a coating composition that includes a polymer material comprising an electrically conductive polymer; and a coated or partially coated magnetic material comprising a magnetic material and an antioxidant material. Aspects of the present disclosure further provide a method of making a coating composition that includes introducing, under first conditions, a magnetic material to a passivation solution comprising an antioxidant to form a coated (or partially coated) magnetic material; and introducing, under second conditions, the coated (or partially coated) magnetic material to a mixture comprising a polymer material to form a coating composition. Aspects of the present disclosure further provide a coated substrate that includes a film and a substrate, the film including a coating composition that includes an electrically conductive polymer, a magnetic material, and an antioxidant.
    Type: Grant
    Filed: March 29, 2022
    Date of Patent: April 23, 2024
    Assignee: THE BOEING COMPANY
    Inventor: Patrick John Kinlen
  • Patent number: 11967717
    Abstract: Disclosed is a tungsten-doped lithium manganese iron phosphate-based particulate for a cathode of a lithium-ion battery. The particulates include a composition represented by a formula of LixMn0.998-y-zFeyMzW0.002PaO4a±p/C, wherein x, y, z, a, p, and M are as defined herein. Also disclosed is a powdery material including the particulates, and a method for preparing the powdery material.
    Type: Grant
    Filed: July 16, 2021
    Date of Patent: April 23, 2024
    Assignee: HCM CO., LTD.
    Inventors: Chien-Wen Jen, Hsin-Ta Huang, Chih-Tsung Hsu, Yi-Hsuan Wang
  • Patent number: 11939682
    Abstract: The embodiments of the present disclosure relate to a method and apparatus for producing a carbon nanomaterial product (CNM) product that may comprise carbon nanotubes and various other allotropes of nanocarbon. The method and apparatus employ a consumable carbon dioxide (CO2) and a renewable carbonate electrolyte as reactants in an electrolysis reaction in order to make CNTs. In some embodiments of the present disclosure, operational conditions of the electrolysis reaction may be varied in order to produce the CNM product with a greater incidence of a desired allotrope of nanocarbon or a desired combination of two or more allotropes.
    Type: Grant
    Filed: November 23, 2022
    Date of Patent: March 26, 2024
    Assignee: C2CNT LLC
    Inventors: Stuart Licht, Gad Licht
  • Patent number: 11932966
    Abstract: Filled carbon nanotubes (CNTs) and methods of synthesizing the same are provided. An in situ chemical vapor deposition technique can be used to synthesize CNTs filled with metal sulfide nanowires. The CNTs can be completely and continuously filled with the metal sulfide fillers up to several micrometers in length. The filled CNTs can be easily collected from the substrates used for synthesis using a simple ultrasonication method.
    Type: Grant
    Filed: January 6, 2023
    Date of Patent: March 19, 2024
    Assignee: THE FLORIDA INTERNATIONAL UNIVERSITY BOARD OF TRUSTEES
    Inventors: Wenzhi Li, Yuba Poudel
  • Patent number: 11915838
    Abstract: Disclosed herein a self-healing, flexible, conductive compositions. The conductive compositions include conductive polymers and acidic polyacrylamides. The compositions are useful in a wide range of applications, including wearable electronics and sensors. The compositions may be prepared using environmentally friendly procedures.
    Type: Grant
    Filed: August 6, 2021
    Date of Patent: February 27, 2024
    Assignee: The Board of Trustees of the University of Alabama
    Inventors: Evan Kane Wujcik, Ju-Won Jeon, Yang Lu
  • Patent number: 11908596
    Abstract: A transparent conductive layer 3 includes a first main surface 5 exposed to the outside, and a second main surface 6 opposite to the first main surface 5 in a thickness direction. The transparent conductive layer 3 is single layer extending in a plane direction. The transparent conductive layer 3 has a first grain boundary 7 in which two end edges 23 in a cross-sectional view are open to the first main surface 5, and an intermediate region 25 between both end edges 23 is not in contact with the second main surface 6, and has a first crystal grain 31 partitioned by the first grain boundary 7 and facing only the first main surface 5.
    Type: Grant
    Filed: January 29, 2021
    Date of Patent: February 20, 2024
    Assignee: NITTO DENKO CORPORATION
    Inventor: Nozomi Fujino
  • Patent number: 11908592
    Abstract: A flexible electrode and a fabrication method therefor are provided. The flexible electrode is formed by mixing organic-soft-matrix with inorganic-hard-material. The inorganic-hard-material is composed of silicate lamellar blocks and electrochemically active materials. Each of the silicate lamellar blocks is formed by multiple stacked nano-scaled sheet-like silicate lamellae. The organic-soft-matrix includes conductive polymer and binder. The binder is water-soluble and ionically conductive. The flexible electrode has a floor-ramp like opened-perforated layer structure formed by hierarchically aggregated inorganic silicate lamellar blocks, and pores of the opened-perforated layer structure are filled with the organic-soft-matrix, so as to form a network channel structure having organic phase and inorganic phase interlaced with each other.
    Type: Grant
    Filed: February 2, 2021
    Date of Patent: February 20, 2024
    Assignee: NATIONAL SYNCHROTRON RADIATION RESEARCH CENTER
    Inventors: Wei-Tsung Chuang, Rong-Hao Guo, Ming-Jay Deng
  • Patent number: 11908961
    Abstract: A transparent electronic device includes an organic film, an amorphous transparent oxycarbide layer, and a matrix layer. The organic film includes a polymer containing carboxyl groups (—COOH). The amorphous transparent oxycarbide layer is disposed on the organic film and consists of a metal element, carbon element, oxygen element and an additional element. The metal element is selected from molybdenum (Mo), indium (In), tin (Sn), zinc (Zn), cadmium (Cd) and a combination thereof. An atomic number percentage of the additional element is equal to or greater than 0%, and is less than the least of an atomic number percentage of the metal element, an atomic number percentage of the oxygen element and an atomic number percentage of the carbon element. The matrix layer is disposed on the amorphous transparent oxycarbide layer. A manufacturing method of a transparent electronic device is also provided.
    Type: Grant
    Filed: October 21, 2022
    Date of Patent: February 20, 2024
    Assignee: AUO CORPORATION
    Inventors: Yu-Ling Lin, Tsung-Ying Ke
  • Patent number: 11891531
    Abstract: The invention relates to a composition containing at least the two following components: a) a silver carboxylate, and b) a terpene, an ink for ink jet printing and a paste for printing with a screen printing method, wherein the ink or the paste, respectively, each contains the composition according to the invention. The invention also relates to a method for producing a pattern on a substrate, at least comprising the following steps: A) providing a substrate and a composition containing at least one silver carboxylate and one terpene; B) applying the composition to the substrate while preserving a precursor with the pattern; C) treating the precursor with the pattern according to a treatment step that is selected from the group consisting of: a) at a temperature of more than 200° C. for at least 10 minutes, wherein the treatment is preferably carried out in an atmosphere of air; b) a photonic sintering process; c) a combination of a) and b), wherein the substrate to which the pattern is applied is preserved.
    Type: Grant
    Filed: January 21, 2020
    Date of Patent: February 6, 2024
    Assignee: HERAEUS DEUTSCHLAND GMBH & CO. KG
    Inventors: Kai-Ulrich Boldt, Peter Kraemer, Susanne Behl
  • Patent number: 11891553
    Abstract: A preparation process of atomically precise nine-nuclear silver nanoclusters (Ag9-NCs) fluorescent nanotube and its application in the detection of arginine (Arg), the fluorescent nanotube is formed by supramolecular self-assembly of Ag9-NCs and peptide (DD-5); the fluorescent nanotube prepared by the present invention has good luminescence performance due to its highly ordered structure, the quantum yield is 8.11%, and the fluorescence lifetime is 6.10 ?s; after adding Arg, the highly ordered structure is destroyed, resulting in fluorescent quenching; the preparation method of the Ag9-NCs fluorescent nanotube of this invention is simple, the cost is low; at the same time, the detection method is fast and easy to observe.
    Type: Grant
    Filed: October 26, 2022
    Date of Patent: February 6, 2024
    Assignee: SHANDONG UNIVERSITY
    Inventors: Xia Xin, Wenjuan Wang, Di Sun, Zhi Wang
  • Patent number: 11879073
    Abstract: A method for fabricating, and curing, nanocomposite adhesives including introducing nanoheater elements into a heat-curing adhesive to fabricate a nanocomposite adhesive, and providing a radio-frequency (RF) electromagnetic wave to the nanocomposite adhesive to heat, and cure the nanocomposite adhesive. The nanocomposite adhesive is physically applied to first and second materials to bond the first and second materials upon curing of the nanocomposite adhesive, and the RF electromagnetic wave has a frequency in the radio-frequency range, having energy that is transferred to the nanoheater elements by electromagnetic wave interactions with permanent and induced dipoles, intrinsic photon-phonon interaction, or interactions with nanoheater defects and grain structures.
    Type: Grant
    Filed: April 20, 2020
    Date of Patent: January 23, 2024
    Assignee: UCHICAGO ARGONNE, LLC
    Inventors: Yuepeng Zhang, John N. Hryn
  • Patent number: 11878947
    Abstract: A ceramic precursor mixtures for extrusion and firing into porous ceramics. The ceramic precursor mixtures include ceramic beads and green inorganic shear binder agglomerates. The green inorganic shear binder agglomerates can include inorganic filler particles and a polymeric binder. The green inorganic shear binder agglomerates can deform under an applied shear stress during mixing and/or extrusion such that they are smeared into a plurality of interbead gaps between adjacent ceramic beads or pore former particles. During firing, the smeared green inorganic shear binder agglomerates can sinter and react to form ribbons extending between, and interconnecting adjacent ceramic beads.
    Type: Grant
    Filed: November 24, 2020
    Date of Patent: January 23, 2024
    Assignee: Corning Incorporated
    Inventors: Monika Backhaus-Ricoult, Linda Kay Bohart, Kimberley Louise Work
  • Patent number: 11873223
    Abstract: Compositions of carbon particles dispersed in phenolic solvents or dispersed in solvent mixtures of one or more phenolic solvents with one or more non-phenolic solvents are provided. The compositions can take the form of liquid dispersions, pastes, gels, and doughs. Also provided are methods of making the compositions and methods of forming the compositions into coatings, films, fibers, and other three-dimensional objects.
    Type: Grant
    Filed: February 24, 2020
    Date of Patent: January 16, 2024
    Assignee: Northwestern University
    Inventors: Jiaxing Huang, Kevin Chiou
  • Patent number: 11870060
    Abstract: A composite including: at least one selected from a silicon oxide of the formula SiO2 and a silicon oxide of the formula SiOx wherein 0<x<2; and graphene, wherein the silicon oxide is disposed in a graphene matrix.
    Type: Grant
    Filed: November 5, 2020
    Date of Patent: January 9, 2024
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Inhyuk Son, Jonghwan Park, Jaejun Chang, Junhwan Ku, Xiangshu Li, Jaeman Choi
  • Patent number: 11858814
    Abstract: The disclosure provides for crystalline graphene nanoribbon-covalent organic frameworks (GNR-COFs) that have a two-dimensional (2D) sheet or film morphology, methods of making thereof, and uses thereof.
    Type: Grant
    Filed: September 15, 2020
    Date of Patent: January 2, 2024
    Assignee: The Regents of the University of California
    Inventors: Felix Raoul Fischer, Gregory Clinton Veber
  • Patent number: 11858816
    Abstract: Disclosed herein are dendritically porous three-dimensional structures, including hierarchical dendritically porous three-dimensional structures. The structures include metal foams and graphite structures, and are useful in energy storage devices as well as chemical catalysis.
    Type: Grant
    Filed: August 9, 2022
    Date of Patent: January 2, 2024
    Assignee: Board of Regents, The University of Texas System
    Inventors: Weigu Li, Donglei Fan
  • Patent number: 11851580
    Abstract: The invention relates to a polymer thick film (PTF) conductive paste composition comprising a conductive powder, a fluoroelastomer, a silane coupling agent, and one or solvents. The PTF conductive paste composition can be used to form a printed conductor and to form an electrically conductive adhesive on various articles. The PTF conductive paste composition is provides a stretchable electrical conductor for wearables.
    Type: Grant
    Filed: November 4, 2021
    Date of Patent: December 26, 2023
    Assignee: Du Pont China Limited
    Inventor: Yu Teng Liang