Patents Examined by Tyler D. Paige
  • Patent number: 11866193
    Abstract: A flight augmentation system with optical sensors to capture information from aircraft instruments. The system may determine a status of the aircraft based on the captured information and provide guidance to an operator. The system may collect long term data and determine an operational history of a pilot or an aircraft. The system may provide instruction based on the data or provide to interested third parties.
    Type: Grant
    Filed: July 31, 2020
    Date of Patent: January 9, 2024
    Assignee: Volo Alto, LLC
    Inventor: Nicholas R. Guida
  • Patent number: 11868146
    Abstract: A flying drone for shelf label checking includes a flying mechanism, a camera, and a camera interface configured to transmit and receive data to and from the camera. A flight control interface is configured to transmit and receive data to and from the flying mechanism. A processor is configured to acquire a first image of an object from a first distance with the camera, then extract an object region for the object from the first image. The processor then sets a flight path based on the object region and controls the flying mechanism to fly the camera along the flight path to a second distance that is closer to the object than the first distance. A second image of the object is then acquired from the second distance with the camera.
    Type: Grant
    Filed: April 14, 2021
    Date of Patent: January 9, 2024
    Assignee: Toshiba Tec Kabushiki Kaisha
    Inventors: Masaaki Yasunaga, Keita Yamazaki
  • Patent number: 11869280
    Abstract: An information providing method is performed in an information providing system. The information providing method includes: acquiring pieces of speed information of a vehicle in association with identification information of an in-vehicle device from the in-vehicle device via roadside antennas, each of the pieces of speed information having been stored in the in-vehicle device each time the vehicle moves a prescribed distance before the vehicle passes by the roadside antennas; and causing an information display device to display evaluation information in association with the identification information, the evaluation information indicating a frequency of occurrence of sudden acceleration or deceleration events of the vehicle obtained from a proportion of differences between calculation values outside a threshold range, the calculation values being calculated on the basis of the pieces of speed information in a prescribed period corresponding to the pieces of speed information stored in the in-vehicle device.
    Type: Grant
    Filed: August 3, 2021
    Date of Patent: January 9, 2024
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Kazunori Inoue, Tomoaki Abe, Hiroshi Uranaka
  • Patent number: 11858662
    Abstract: Embodiments of the present disclosure are directed to systems and methods for autonomously performing and/or facilitating drone diagnostic functions. Prior to a mission of a UAV, an inspection station comprising at least one imaging sensor and at least one directional force sensor may be used to perform a plurality of air worthiness inspections and/or maintenance checks with little to no human intervention. Once the UAV has been determined to be air worthy, it is approved for a subsequent mission.
    Type: Grant
    Filed: November 10, 2021
    Date of Patent: January 2, 2024
    Inventor: Julio Gil
  • Patent number: 11854319
    Abstract: The technology involves operation of a self-driving truck or other cargo vehicle when it is being inspected at a weigh station. This may include determining whether a weigh station is open for inspection. Once at the weigh station, the vehicle may follow instructions of an inspection officer or autonomous inspection system. The vehicle may perform predefined actions or operations so that various vehicle systems and safety issues can be evaluated, such as the brakes, lights, tires, connections between the tractor and trailer, exposed fuel tanks, leaks, etc. A visual inspection may be performed to ensure the load is secured, vehicle and cargo documents meet certain criteria, and the carrier's safety record meets any requirements. In addition, the weigh station itself may be operated in a partly or fully autonomous mode when dealing with autonomous and manually driven vehicles.
    Type: Grant
    Filed: January 21, 2022
    Date of Patent: December 26, 2023
    Assignee: Waymo LLC
    Inventor: Vijaysai Patnaik
  • Patent number: 11847868
    Abstract: A system and method for monitoring vehicle performance and updating engine control parameters, which provides a solution to the problem of tuning engine control parameters for a vehicle. The core components of the invention are an engine controller coupled to an interface device which communicates with a remote device. Generally speaking, the components are configured as follows: the engine controller receives signals from various sensors in a vehicle and the engine controller controls the engine based on engine control parameters and the signals from the sensors. The interface device monitors the engine control and sensor signals and transmits information to the remote device. The remote device receives the information and sends back updated engine control parameters. The interface device receives the updated engine control parameters and communicates with the engine controller to update the engine control parameters using the updated engine control parameters.
    Type: Grant
    Filed: September 30, 2022
    Date of Patent: December 19, 2023
    Inventor: Joshuah W. Gray
  • Patent number: 11841440
    Abstract: In one embodiment, a lidar system includes a light source configured to emit pulses of light and a scanner configured to scan the emitted pulses of light along a high-resolution scan pattern located within a field of regard of the lidar system. The scanner includes one or more scan mirrors configured to (i) scan the emitted pulses of light along a first scan axis to produce multiple scan lines of the high-resolution scan pattern, where each scan line is associated with multiple pixels, each pixel corresponding to one of the emitted pulses of light and (ii) distribute the scan lines of the high-resolution scan pattern along a second scan axis. The high-resolution scan pattern includes one or more of: interlaced scan lines and interlaced pixels.
    Type: Grant
    Filed: November 24, 2021
    Date of Patent: December 12, 2023
    Assignee: Luminar Technologies, Inc.
    Inventors: Istvan Peter Burbank, Matthew D. Weed, Jason Paul Wojack, Jason M. Eichenholz, Dmytro Trofymov
  • Patent number: 11835561
    Abstract: Methods, systems and apparatus, for an unmanned aerial vehicle electromagnetic avoidance and utilization system. One of the methods includes obtaining a flight package indicating a flight pattern associated with inspecting a structure, the flight pattern causing the UAV to remain at a standoff distance from the structure, wherein the standoff distance is based on an electromagnetic field associated with the structure, and wherein the flight pattern is laterally constrained according to a property geofence associated with a right of way of the structure. The UAV is navigated according to the flight pattern, and the UAV captures images of the structure. For an initial portion of the flight pattern, the UAV navigates at an altitude based on the standoff distance and the property geofence towards the structure. The UAV determines a location at which to capture images of the structure, and the UAV provides the captured images to a user device.
    Type: Grant
    Filed: May 7, 2021
    Date of Patent: December 5, 2023
    Assignee: Skydio, Inc.
    Inventors: Fabien Blanc-Paques, Bernard J. Michini, Mark Patrick Bauer
  • Patent number: 11834056
    Abstract: A calibration and repair system for advanced driver assistance systems (“ADAS”) and features is configured to provide secure, automated workflow management related to the calibration of ADAS. Automated workflows include steps and interfaces to aid in preparation of a vehicle for calibration, local-remote collaboration during calibration, customer interactions, workflow and event notification, user authentication, remote system management, and other tasks. The system is also capable of automatically and dynamically adding new and updated calibration specifications that are usable during local-remote collaboration.
    Type: Grant
    Filed: October 8, 2021
    Date of Patent: December 5, 2023
    Assignee: Vehicle Service Group, LLC
    Inventors: Sreedhar Patnala, Naor Pinto, Mickey Swartz, Brent Johnson
  • Patent number: 11834097
    Abstract: A driving support ECU initializes a target trajectory calculation parameter at a start of LCA; calculates, based on the target trajectory calculation parameter, a target trajectory function representing a target lateral position which is a target position of an own vehicle in a lane width direction in accordance with an elapsed time from the start of LCA; calculates a target control amount based on the target trajectory function; when a steering operation by a driver has been detected, again initializes the target trajectory calculation parameter; and recalculates the target trajectory function based on the target trajectory calculation parameter.
    Type: Grant
    Filed: June 2, 2020
    Date of Patent: December 5, 2023
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventor: Shota Fujii
  • Patent number: 11815888
    Abstract: A carrier aerial vehicle system includes a propulsion component configured to enable the carrier aerial vehicle system to be in flight. The carrier aerial vehicle system further includes a retention mechanism configured to allow a plurality of deployable parasite aerial vehicles to be coupled to the retention mechanism and released from the retention mechanism while the carrier aerial vehicle system is in flight. The carrier aerial vehicle system further includes a communication component configured to enable the carrier aerial vehicle system to wireless communicate with the plurality of parasite deployable aerial vehicles. The carrier aerial vehicle system further includes a processor configured to determine a position on the retention mechanism for each deployable parasite aerial vehicle of the plurality of deployable parasite aerial vehicles.
    Type: Grant
    Filed: September 30, 2021
    Date of Patent: November 14, 2023
    Assignee: Skyfront Corp.
    Inventor: Troy Mestler
  • Patent number: 11816624
    Abstract: Technologies are generally described for preparation and drone based delivery of food items. In some examples, a delivery vehicle may be arranged for autonomous or semi-autonomous preparation of food items while the vehicle is en route to a delivery destination or parked at the delivery destination. Aerial and/or ground based drones, which may be stored in the vehicle, may be loaded with prepared food items and deliver their payloads to delivery locations. Preparation timing and other parameters for the food items, travel parameters for the delivery vehicle, and/or the delivery destination may be selected based on suitability of the delivery destination for launching/recovering the drones or delivery of the food items to the delivery locations. The drones may carry multiple payloads to multiple locations and may have environmentally controlled storage.
    Type: Grant
    Filed: November 26, 2019
    Date of Patent: November 14, 2023
    Assignee: CONGRUENS GROUP, LLC
    Inventor: Joshua Gouled Goldberg
  • Patent number: 11804133
    Abstract: The present technology utilizes vehicles in a fleet of vehicles to record weather data samples at many locations in a service area. Each vehicle in the fleet becomes a weather station that can record weather data at many locations and frequently. The weather data can be used to make intelligent decisions regarding fleet management.
    Type: Grant
    Filed: December 20, 2021
    Date of Patent: October 31, 2023
    Assignee: GM Cruise Holdings LLC
    Inventors: Nestor Grace, Diego Plascencia-Vega, Spyros Maniatopoulos
  • Patent number: 11801833
    Abstract: One variation of a method for influencing entities proximal a road surface includes, at an autonomous vehicle: over a first period of time, detecting a pedestrian proximal a road surface; predicting an initial path of the pedestrian an initial confidence score for the initial path of the pedestrian based on and motion of the pedestrian during the first period of time; in response to the initial confidence score falling below a threshold confidence, replaying an audio track audible to the pedestrian and calculating a revised path of the pedestrian and a revised confidence score for the revised path based on motion of the pedestrian following replay of the audio track; and autonomously navigating across the road surface according to a planned route in response to the revised path of the pedestrian falling outside of the planned route and the revised confidence score exceeding the threshold confidence.
    Type: Grant
    Filed: January 11, 2021
    Date of Patent: October 31, 2023
    Inventors: Michael Paris, Carol Reiley
  • Patent number: 11790705
    Abstract: An example method includes receiving, at a computing system, parameters from a vehicle, wherein the parameters correspond to a set of associated parameter identifiers (PIDs), and determining, by the computing system, one or more thresholds for one or more PIDs of the set of associated PIDs. The example method additionally includes determining, by the computing system, one or more indicators displayable on a first graph of parameters corresponding to a first PID of the set of associated PIDs. For instance, at least one indicator of the one or more indicators represents a parameter corresponding to a second PID of the set of associated PIDs breaching a threshold associated with the second PID. The example method further includes displaying, by the computing system on a graphical user interface, the first graph of parameters corresponding to the first PID and the one or more indicators on the first graph.
    Type: Grant
    Filed: November 2, 2020
    Date of Patent: October 17, 2023
    Assignee: Snap-on Incorporated
    Inventor: Joshua C. Covington
  • Patent number: 11790707
    Abstract: A method of assembling a recreational vehicle includes providing a structural panel for installation in the recreational vehicle, which has a surface and a readable image in or internal to the structural panel, with the readable image being located at or near a location on the surface of the structural panel for installing a component at the location. The readable image has to-be-installed component information about the component to be installed at the location and is readable at the surface of the structural panel. The method further includes reading the readable image to determine the to-be-installed component information about the component that is to be installed at the location on the surface of the structural panel.
    Type: Grant
    Filed: October 22, 2021
    Date of Patent: October 17, 2023
    Assignee: Thor Tech, Inc.
    Inventors: Todd B. Lozier, Steven J. Romanowski
  • Patent number: 11780502
    Abstract: A driving support ECU initializes a target trajectory calculation parameter at a start of LCA; calculates, based on the target trajectory calculation parameter, a target trajectory function representing a target lateral position which is a target position of an own vehicle in a lane width direction in accordance with an elapsed time from the start of LCA; calculates a target control amount based on the target trajectory function; when a steering operation by a driver has been detected, again initializes the target trajectory calculation parameter; and recalculates the target trajectory function based on the target trajectory calculation parameter.
    Type: Grant
    Filed: December 28, 2021
    Date of Patent: October 10, 2023
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventor: Shota Fujii
  • Patent number: 11778434
    Abstract: Provided are a method and a system for integratedly managing a vehicle operation state. A vehicle integration management method performed by a server implemented by using a computer may include: receiving vehicle operation data related to an operation state of the vehicle from a vehicle terminal mounted or embedded in the vehicle; and providing a service related to the vehicle operation data through a dedicated application on a user terminal used by a user of the vehicle, wherein the providing may provide at least one of an operation report, a parking impact notification, and an accident situation notification based on the vehicle operation data in association with the application.
    Type: Grant
    Filed: February 18, 2021
    Date of Patent: October 3, 2023
    Assignee: THINKWARE CORPORATION
    Inventors: Dae Won Kim, Taekyu Han
  • Patent number: 11769295
    Abstract: A system and method for generating a 3D model and/or map of a geographic region is disclosed. A computer designates a geographic region and a number of aircraft, and partitions the designated geographic region into sub-regions, creates waypoints within each sub-region, and plans missions for each aircraft to fly to each waypoint and take pictures. The aircraft are configured to accept and perform missions from the computer, and the computer receives images from the aircraft, assigns each image to a sub-region, and transmits each sub-region and images, as well as instructions, to the computing resource. The computing resource executes the instructions, which perform 3D reconstruction and generate orthophotos and 3D models. The 3D reconstruction comprises trimming distorted portions of the orthophotos and 3D models, and merging the orthophotos and 3D models from each sub-region into a 3D model and/or map of the geographic region.
    Type: Grant
    Filed: June 3, 2021
    Date of Patent: September 26, 2023
    Assignee: Locus Social Inc.
    Inventors: Haowen You, Shaofeng Yang
  • Patent number: 11769357
    Abstract: The technology involves operation of a self-driving truck or other cargo vehicle when it is being inspected at a weigh station. This may include determining whether a weigh station is open for inspection. Once at the weigh station, the vehicle may follow instructions of an inspection officer or autonomous inspection system. The vehicle may perform predefined actions or operations so that various vehicle systems and safety issues can be evaluated, such as the brakes, lights, tires, connections between the tractor and trailer, exposed fuel tanks, leaks, etc. A visual inspection may be performed to ensure the load is secured, vehicle and cargo documents meet certain criteria, and the carrier's safety record meets any requirements. In addition, the weigh station itself may be operated in a partly or fully autonomous mode when dealing with autonomous and manually driven vehicles.
    Type: Grant
    Filed: August 24, 2021
    Date of Patent: September 26, 2023
    Assignee: Waymo LLC
    Inventor: Vijaysai Patnaik