Patents Examined by Tynese V McDaniel
  • Patent number: 11437829
    Abstract: Lithium-ion cells are widely used in various platforms, such as electric vehicles (EVs) and mobile devices. Complete and fast charging of cells has always been the goal for sustainable system operation. However, fast charging is not always the best solution, especially in view of a new finding that cells need to rest/relax after being charged with high current to avoid accelerated capacity fading. A user aware charging algorithm is proposed which maximizes the charged capacity within a user-specified available charging time (i.e., user-awareness) while ensuring enough relaxation (i.e., cell-awareness) and keeping cell temperature below a safe level.
    Type: Grant
    Filed: October 27, 2016
    Date of Patent: September 6, 2022
    Assignee: THE REGENTS OF THE UNIVERSITY OF MICHIGAN
    Inventors: Kang G. Shin, Liang He
  • Patent number: 11418041
    Abstract: A battery system includes a first cell balancing circuit electrically coupled to first and second sense lines and to a first battery cell. The battery system includes an integrated circuit measuring a first cell voltage between first and second sense lines at a first time while a first cell balancing circuit is turned off, and a second cell voltage between second and third sense lines at the first time while the second cell balancing circuit is turned off, and determining first and second cell voltage values based on the first and second cell voltages, respectively. A microcontroller receives the first and second cell voltage values and determines that an open circuit condition exists in the first balancing circuit if the first cell voltage value is greater than a first threshold voltage value, or the second cell voltage value is less than a second threshold voltage value.
    Type: Grant
    Filed: March 15, 2019
    Date of Patent: August 16, 2022
    Assignee: LG Energy Solution, Ltd.
    Inventor: Greg Bober
  • Patent number: 11411421
    Abstract: A control device for controlling charging of a rechargeable battery, the control device including a rechargeable dummy cell, a first circuit configured to charge the battery and the dummy cell, and a second circuit configured to measure the open circuit voltage of the dummy cell. The control device is configured to: determine the open circuit voltage of the dummy cell by using the second circuit, and determine the maximum capacity increment of the battery, which is to be charged until full charging, based on the determined open circuit voltage of the dummy cell. Also, a corresponding method of controlling charging of a rechargeable battery.
    Type: Grant
    Filed: February 2, 2016
    Date of Patent: August 9, 2022
    Assignee: TOYOTA MOTOR EUROPE
    Inventors: Keita Komiyama, Yuki Katoh
  • Patent number: 11404893
    Abstract: A vehicle power supply control system includes a communicator configured to receive an emergency notification for notifying that an emergency situation has occurred and a controller configured to control charging and discharging of a secondary battery that supplies electric power to an electric motor for outputting a travel driving force of a vehicle. The controller is configured to perform control for extending an electric power supply range in the secondary battery in a case where the communicator has received the emergency notification.
    Type: Grant
    Filed: August 12, 2020
    Date of Patent: August 2, 2022
    Assignee: HONDA MOTOR CO., LTD.
    Inventor: Shuichi Kazuno
  • Patent number: 11398734
    Abstract: Methods, systems, and computer program products for battery pack management are provided. Aspects include receiving battery pack data for two or more battery packs, the two or more battery packs comprising a first battery pack and a second battery pack, determining a target performance characteristic for the first battery pack and the second battery pack, determining a first hold up time for the first battery pack and a second hold up time for the second battery pack based at least in part on the battery pack data, determining, based on the target performance characteristic, a target hold up time from the first hold up time and the second hold up time, and determining, based on the battery pack data, a first voltage for the first battery pack and a second voltage for the second battery pack that satisfies the target hold up time.
    Type: Grant
    Filed: June 27, 2019
    Date of Patent: July 26, 2022
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Noah Singer, John S. Werner, Arkadiy O. Tsfasman, John Torok, Budy Notohardjono
  • Patent number: 11381223
    Abstract: A power supply system includes: a first power storage device; a second power storage device having a lower voltage than the first power storage device; a DC-DC converter including a choke coil, a first switching element, a diode connected in parallel with the first switching element, and a second switching element; a semiconductor relay configured to switch a connection state between a second end of the choke coil and the second power storage device; and a controller configured to perform PWM control of the first switching element and the second switching element to control ON and OFF of the semiconductor relay. When an ON time of the second switching element is controlled to become zero and a current flowing out from the second power storage device exceeds a first reference current, the controller reduces a duty ratio of an ON time of the first switching element.
    Type: Grant
    Filed: August 23, 2018
    Date of Patent: July 5, 2022
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Tomohiro Usami, Takuya Yamamoto
  • Patent number: 11332024
    Abstract: A circuit arrangement for a vehicle charger system, configured to reduce drain current in a connector proximity detection circuit when a charge connector is inserted in a charge socket and a charge cycle is terminated. The circuit arrangement includes a resistor and a switch connected in parallel and arranged in the proximity detection circuit. The switch is configured to be opened when a charge cycle has started, and the switch is adapted to remain open when the charge cycle has terminated and the charge connector remains in the charge socket.
    Type: Grant
    Filed: May 2, 2018
    Date of Patent: May 17, 2022
    Assignee: VOLVO CAR CORPORATION
    Inventor: Tapas Anjan Sarangi
  • Patent number: 11322950
    Abstract: A method of operating an ESS with optimal efficiency includes: collecting charge/discharge efficiency data of a PCS; collecting charge/discharge efficiency data of a battery depending on current state of charge of the battery; creating charge/discharge efficiency data of a unit BESS including the PCS and the battery by using the collected data; determining optimal charge/discharge levels of at least two unit-BESSs included in the ESS by using charge/discharge efficiency data of the at least two unit-BESSs to satisfy commanded input/output power values of the whole ESS at a current point of time; and charging or discharging the at least two unit-BESSs depending on the determined optimal charge/discharge power values.
    Type: Grant
    Filed: December 6, 2017
    Date of Patent: May 3, 2022
    Assignee: HYOSUNG HEAVY INDUSTRIES CORPORATION
    Inventors: Sang Hui Park, Geon Ho An
  • Patent number: 11258285
    Abstract: An user-interactive charging paradigm is presented that tailors the device charging to the user's real-time needs. The core of approach is a relaxation-aware charging algorithm that maximizes the charged capacity within the user's available time and slows down the battery's capacity fading. The approach also integrates relaxation-aware charging algorithm existing fast charging algorithms via a user-interactive interface, allowing users to choose a charging method based on their real-time needs. The relaxation-aware charging algorithm is shown to slow down the battery fading by over 36% on average, and up to 60% in extreme cases, when compared with existing fast charging solutions. Such fading slowdown translates to, for instance, an up to 2-hour extension of the LTE time for a Nexus 5X phone after 2-year usage, revealed by a trace-driven analysis based on 976 charging cases collected from 7 users over 3 months.
    Type: Grant
    Filed: May 21, 2018
    Date of Patent: February 22, 2022
    Assignee: THE REGENTS OF THE UNIVERSITY OF MICHIGAN
    Inventors: Kang G. Shin, Liang He
  • Patent number: 11251642
    Abstract: Apparatuses and systems are provided for improving wireless power transmission for mobile devices. An enclosure for a mobile device may include a first electrical coil configured to establish a first wireless coupling with a transmitter coil of a power supply and a second electrical coil configured to establish a second wireless coupling with the first electrical coil and to establish a third wireless coupling with a receiver coil of a mobile device. A distance between the receiver coil and the transmitter coil may exceed a range over which the transmitter coil may be able to transfer power to the receiver coil via a single wireless coupling between the transmitter coil and the receiver coil. The first wireless coupling, the second wireless coupling, and the third wireless coupling, when established, may enable the transmitter coil to perform a wireless power transfer to the receiver coil.
    Type: Grant
    Filed: March 20, 2019
    Date of Patent: February 15, 2022
    Inventor: Geoffrey Herbert Harris
  • Patent number: 11245277
    Abstract: A mobile device includes a drive element, a first battery configured to supply power to the drive element, and a stopping unit stopping supplying of power to the first battery when a voltage of an attachable/detachable second battery configured to supply power to the drive element is greater than or equal to a first voltage for driving the drive element.
    Type: Grant
    Filed: September 20, 2019
    Date of Patent: February 8, 2022
    Assignee: Seiko Epson Corporation
    Inventor: Ryohei Horita
  • Patent number: 11233412
    Abstract: A portable power bank and mobile computing device are described, where the mobile computing device includes a rechargeable battery that receives electric charge from the power bank via an electrical connection. Systems and methods facilitate determination of a “number of potential rechargings” of the mobile computing device battery via the power bank, e.g., how many times the power bank can charge the mobile computing device battery to a desired fuel gauge (e.g., 100%) before the power bank is depleted. The number of potential rechargings is determined based upon the desired fuel gauge of the mobile computing device, present fuel gauges of the mobile computing device and the power bank, and charging efficiency factors corresponding to the mobile computing device and the power bank, respectively.
    Type: Grant
    Filed: March 23, 2020
    Date of Patent: January 25, 2022
    Assignee: DURACELL U.S. OPERATIONS, INC.
    Inventors: Jordan Bourilkov, John Rotondo, Francisco Jose Restrepo, Sergio Coronado Hortal
  • Patent number: 11225159
    Abstract: Embodiments of the disclosure relate to a charging station for electric vehicles with a ground foundation and a column arranged above the ground foundation and accommodating charging electronics. The ground foundation and the column are formed in one piece. The column includes an opening which runs transversely to the longitudinal axis of the column and extends into the interior of the column. The opening is arranged for accommodating a charging electronics, in particular the opening is arranged as receptacle for the charging electronics and comprises locking means for the charging electronics.
    Type: Grant
    Filed: February 18, 2020
    Date of Patent: January 18, 2022
    Assignee: innogy SE
    Inventors: Jürgen Waffner, Jörg Meier
  • Patent number: 11211809
    Abstract: A method for heating an energy storage device having a core with an electrolyte, the method including: providing the energy storage device having inputs and characteristics of a capacitance across the electrolyte and the core and internal surface capacitance between the inputs which can store electric field energy between internal electrodes of the energy storage device that are coupled to the inputs; switching between a positive input voltage and a negative input voltage provided to one of the inputs at a frequency sufficient to effectively short the internal surface capacitance of the energy storage device to generate heat and raise a temperature of the electrolyte; and discontinuing the switching when the temperature of the electrolyte is above a predetermined temperature that is considered sufficient to increase a charging efficiency of the energy storage device.
    Type: Grant
    Filed: June 24, 2019
    Date of Patent: December 28, 2021
    Assignee: OMNITEK PARTNERS LLC
    Inventors: Jahangir S Rastegar, Philip C Kwok
  • Patent number: 11211810
    Abstract: A heating circuit for an energy storage device having a core with an electrolyte, the energy storage device having inputs, characteristics of a capacitance across the electrolyte and the core, and internal surface capacitance between the inputs which can store electric field energy between internal electrodes of the energy storage device that are coupled to the inputs, the battery heating circuit including: a controller configured to switch between a positive input voltage and a negative input voltage provided to one of the inputs at a frequency sufficient to effectively short the internal surface capacitance of the energy storage device to generate heat and raise a temperature of the electrolyte, the controller being further configured to discontinue the switching when the temperature of the electrolyte and/or the energy storage device is above a predetermined temperature that is considered sufficient to increase a charging efficiency of the energy storage device.
    Type: Grant
    Filed: September 30, 2019
    Date of Patent: December 28, 2021
    Assignee: OMNITEK PARTNERS LLC
    Inventors: Jahangir S Rastegar, Philip C Kwok
  • Patent number: 11201492
    Abstract: A method of wirelessly charging batteries of devices includes detecting at least two devices being simultaneously present on a charging mat. It is determined, for each of the at least two devices, whether the device is compatible with a wireless charging standard. It is determined, for each of the two devices, whether the device is enabled for a near field communication. Charging of the devices is prevented if at least one of the devices is enabled for a near field communication but not compatible with the wireless charging standard.
    Type: Grant
    Filed: December 24, 2015
    Date of Patent: December 14, 2021
    Assignee: Intel Corporation
    Inventors: Anand S. Konanur, Lei Shao, Steven G. Gaskill, Xintian E. Lin, Songnan Yang, Jason Ku, Jie Gao
  • Patent number: 11177672
    Abstract: The described technology relates to a battery pack and a data transmission method for the battery pack. In one embodiment, the battery pack includes a battery comprising at least one battery cell and a controller configured to check a state of the battery and generate a battery state signal corresponding to the state of the battery. The battery pack also includes a switch circuit configured to operate based on the battery state signal and a resistor circuit configured to be electrically connected to a reference node through the switch circuit. The switch circuit is configured to make or break electrical connection between the resistor circuit and the reference node based on the battery state signal.
    Type: Grant
    Filed: August 2, 2019
    Date of Patent: November 16, 2021
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Inhye No, Kumyul Hwang
  • Patent number: 11171509
    Abstract: Adaptive charging networks in accordance with embodiments of the invention enable the optimization of electric design of charging networks for electric vehicles. One embodiment includes an electrical supply; a plurality of adaptive charging stations; wherein at least one adaptive charging station distributes power to at least one other adaptive charging station; wherein at least one adaptive charging station is configured to communicate capacity information to a controller; and wherein the controller is configured to control the distribution of power to the plurality of adaptive charging stations based upon the capacity information received from at least one adaptive charging station.
    Type: Grant
    Filed: February 27, 2017
    Date of Patent: November 9, 2021
    Assignee: California Institute of Technology
    Inventors: George S. Lee, Steven H. Low
  • Patent number: 11148534
    Abstract: A cooling unit for a charging column includes a heat exchanger with first connections and second connections and that is set up for cooling a closed secondary coolant circuit of the charging column if the first connections are fluidically connected to a common primary coolant circuit of the electric filling station and the second connections are fluidically connected to the secondary coolant circuit. Also described herein is a corresponding charging column.
    Type: Grant
    Filed: July 3, 2018
    Date of Patent: October 19, 2021
    Inventors: Volker Reber, David Köhler, Stefan Götz
  • Patent number: 11152803
    Abstract: A battery charger detection system is provided. The battery charger detection system includes a battery charger, an indicator, and a controller. The controller detects an initial electrical coupling of the battery charger to a battery and measures a first voltage of the battery upon the electrical coupling. The controller further measures a second voltage of the battery and actuates the indicator in response to both a continued electrical coupling between the battery charger and the battery and the second voltage being less than or equal to the first voltage after a predetermined length of time.
    Type: Grant
    Filed: December 30, 2015
    Date of Patent: October 19, 2021
    Assignee: CLUB CAR, LLC
    Inventor: Robert H. Edwards