Patents Examined by Upendra Roy
  • Patent number: 5431752
    Abstract: The component comprises a body (5) composed of an alloy based on a .gamma.-titanium aluminide, a steel body (2) and a connecting piece (4) composed of a nickel-base alloy. The .gamma.-titanium aluminide body (5) and the steel body (2) are rigidly joined together by means of the connecting piece (4). The joint between the .gamma.-titanium aluminide body (5) and the connecting piece (4) is produced by friction welding. The nickel-base alloy has a nickel content of less than 65 percent by weight. This achieves the result that the friction-welding joint of the .gamma.-titanium aluminide body (5) to the connecting piece (4) can be produced at comparatively low temperatures. During the friction welding, the risk of crack formations in the embrittlement-prone .gamma.-titanium aluminide body (5) is therefore appreciably reduced.
    Type: Grant
    Filed: November 12, 1993
    Date of Patent: July 11, 1995
    Assignee: Asea Brown Boveri Ltd.
    Inventors: Erwin Brogle, Markus Staubli, Mohammed Y. Nazmy, Dieter Gausmann
  • Patent number: 5431874
    Abstract: Titanium alloys containing aluminum, hafnium, tantalum, and silicon are found to have improved tensile strengths as well as ductility and oxidation resistance at temperatures up to and above 750.degree. C. without embrittlement.
    Type: Grant
    Filed: January 3, 1994
    Date of Patent: July 11, 1995
    Assignee: General Electric Company
    Inventor: Michael F. X. Gigliotti, Jr.
  • Patent number: 5429796
    Abstract: A TiAl alloy base melt including at least one of Cr, C, Ga, Mo, Mn, Nb, Ni Si, Ta, V and W and at least about 0.5 volume % boride dispersoids is investment cast to form a crack-free, net or near-net shape article having a gamma TiAl intermetallic-containing matrix with a grain size of about 10 to about 250 microns as a result of the presence of the boride dispersoids in the melt. As hot isostatically pressed and heat treated to provide an equiaxed grain structure, the article exhibits improved strength.
    Type: Grant
    Filed: October 26, 1993
    Date of Patent: July 4, 1995
    Assignee: Howmet Corporation
    Inventor: Donald E. Larsen, Jr.
  • Patent number: 5427631
    Abstract: Objects of titanium or titanium alloys having the surface converted to a hard and wear-resistant nitride layer with good adhesion, which is distributed uniformly and also provides internal capillaries. The objects are produced by being treated in a vacuum furnace with an atmosphere of pure nitrogen gas at a temperature of 650.degree.-1000.degree. C. and at a pressure below atmospheric pressure. The thickness of the nitride layer can be controlled by controlling the treatment time and temperature.
    Type: Grant
    Filed: March 30, 1994
    Date of Patent: June 27, 1995
    Assignee: Ytbolaget I Uppsala Aktiebolag
    Inventors: Erik Johansson, Helena Westberg
  • Patent number: 5423923
    Abstract: Deposition of a hard film of Ti-Si-N composite material on a substrate is carried out by using a source of evaporation possessing a composition of Ti.sub.a Si.sub.b (wherein "a" and "b" stand for atomic percentages respectively falling in the ranges of 75 at % .ltoreq.a.ltoreq.85 at % and 15 at %.ltoreq.b.ltoreq.25 at %, providing a+b=100 at %). Deposition is effected by a sputtering process or ion plating process in an atmosphere of an inert gas containing a nitrogen-containing reaction gas while controlling the feed rate of the reaction gas into a chamber in such a manner that the partial pressure of nitrogen is kept constant or varied continuously or stepwise. By this method there can be obtained a film having fine TiN crystalline particles uniformly dispersed in the matrix phase of Ti-Si amorphous metal or a film of functionally gradient structure in which the ratio of fine TiN crystalline particles dispersed in the matrix phase increases continuously or stepwise in the direction of thickness of the film.
    Type: Grant
    Filed: September 30, 1994
    Date of Patent: June 13, 1995
    Assignees: Yoshida Kogyo K.K., Tsuyoshi Masumoto, Akihisa Inoue, Honda Motor Co., Ltd.
    Inventors: Hiroshi Yamagata, Tadashi Yamaguchi, Hideki Takeda, Nobuyuki Nishiyama, Katsutoshi Nozaki, Akihisa Inoue, Tsuyoshi Masumoto
  • Patent number: 5424030
    Abstract: A copper alloy contains beryillium ranging from 0.2 to 0.7% in weight, nickel ranging from 0.1% to 2% in weight, and the balance copper and incidental impurities. Preferably, the incidental impurities include sulfur. A first preferable additional substance includes cobalt, zirconium or iron. A second preferable substance includes tin or zinc. A lead frame with a fine lead pattern is formed from a sheet of the copper alloy without burr, thereby improving the production yield of the lead frame.
    Type: Grant
    Filed: December 3, 1993
    Date of Patent: June 13, 1995
    Assignee: Yamaha Metanix Corporation
    Inventor: Hideya Takahashi
  • Patent number: 5421914
    Abstract: A method and article of manufacture of a coated iron based alloy. The method includes providing an iron based alloy substrate, depositing a silicon containing layer on the alloy surface while maintaining the alloy at a temperature of about 700.degree. C.-1200.degree. C. to diffuse silicon into the alloy surface and exposing the alloy surface to an ammonia atmosphere to form a silicon/oxygen/nitrogen containing protective layer on the iron based alloy.
    Type: Grant
    Filed: October 12, 1993
    Date of Patent: June 6, 1995
    Assignee: The University of Chicago
    Inventor: Jong-Hee Park
  • Patent number: 5422065
    Abstract: The contact material in particular for contacts in low-voltage switches consists of silver and further active components. In accordance with the invention, iron (Fe) in proportions of between 1 and 50% by weight and rhenium (Re) in proportions of between 0.01 and 5% by weight are present in combination as active components. The manufacture of the material and the fabricating of the contacts can be effected by methods of powder metallurgy with inclusion of molding or extrusion techniques, the active components being used in the form of separate powders, as fusible alloy or as mechanically alloyed powder.
    Type: Grant
    Filed: November 23, 1993
    Date of Patent: June 6, 1995
    Assignee: Siemens Aktiengesellschaft
    Inventors: Franz Hauner, Wolfgang Haufe
  • Patent number: 5421917
    Abstract: An alloy based on titanium and containing 0.5 to 30% by weight of magnesium, calcium or lithium is produced by vapor quenching to yield a metastable solid solution of solute in titanium. Exemplified alloys containing magnesium have age hardening or solution strengthening characteristics. Vapor quenching enables these alloys to be produced despite the differences in melting temperature between solute and solvent by separate vaporization of each of the species and mixing in the vapor phase. This method provides a route to achieving rapid solidification microstructures unobtainable by other rapid solidification methods. Preferred alloys comprise Ti with 1-15% or 3-7% by weight of magnesium. The alloys may contain other strengthening ingredients currently used in titanium alloys.
    Type: Grant
    Filed: October 12, 1993
    Date of Patent: June 6, 1995
    Assignee: The Secretary of State for Defence in her Britannic Majesty's Government of the United Kingdom of Great Britain and Northern Ireland
    Inventors: Peter G. Partridge, Charles M. Ward-Close
  • Patent number: 5419788
    Abstract: The present invention relates to a method for increasing the useful life of a shape memory alloy (SMA) actuator, wherein the SMA element contracts on heating and elongates on cooling under an applied stress and that property is used as an actuating technique. More specifically, the present invention relates to the cooling aspect of the cycle and maintaining a martensite strain on the actuator SMA element at less than about 3% by limiting the upper stress on the element. In the most preferred embodiment, the element is a ribbon actuator prepared from a nickel-titanium SMA alloy.
    Type: Grant
    Filed: December 10, 1993
    Date of Patent: May 30, 1995
    Assignee: Johnson Service Company
    Inventors: Paul E. Thoma, Ming-Yuan Kao, Dwight M. Schmitz
  • Patent number: 5417781
    Abstract: Gamma titanium aluminide alloy articles having improved properties are produced by the following methods:The first of these methods comprises the steps of: (a) heat treating an alloy billet or preform at a temperature in the approximate range of T.sub..alpha. to T.sub..alpha. +100.degree. C. for about 0.5 to 8 hours, (b) shaping the billet at a temperature between T.sub..alpha. -30.degree. C. and T.sub..alpha. to produce a shaped article, and (c) aging the thus-shaped article at a temperature between about 750.degree. and 1050.degree. C. for about 2 to 24 hours.The second method comprises (a) rapidly preheating an alloy preform to a temperature in the approximate range of T.sub..alpha. to T.sub..alpha. +100.degree. C., (b) shaping the billet at a temperature between T.sub..alpha. and T.sub..alpha. +100.degree. C. to produce a shaped article, and (c) aging the thus-shaped article at a temperature between about 750.degree. and 1050.degree. C. for about 2 to 24 hours.
    Type: Grant
    Filed: June 14, 1994
    Date of Patent: May 23, 1995
    Assignee: The United States of America as represented by the Secretary of the Air Force
    Inventors: Paul A. McQuay, Dennis M. Dimiduk, Young-Won Kim
  • Patent number: 5417774
    Abstract: A process for producing low-cost atmospheres suitable for annealing, brazing, and sintering ferrous and non-ferrous metals and alloys, neutral hardening low, medium, and high carbon steels, sintering ceramic powders, and sealing glass to metal from non-cryogenically produced nitrogen containing up to 5% residual oxygen is disclosed. According to the process, suitable atmospheres are produced by 1) pre-heating the non-cryogenically produced nitrogen stream containing residual oxygen to a desired temperature, 2) mixing it with more than a stoichiometric amount a hydrocarbon gas, 3) passing it through a reactor packed with a platinum group of metal catalyst to reduce the residual oxygen to very low levels and convert it to a mixture of moisture and carbon dioxide, and 4) introducing the reactor effluent stream into the heating zone of a furnace and converting in-situ a portion of both moisture and carbon dioxide with a hydrocarbon gas to a mixture of carbon monoxide and hydrogen.
    Type: Grant
    Filed: December 22, 1992
    Date of Patent: May 23, 1995
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Diwakar Garg, Brian B. Bonner, Donald P. Eichelberger, Kerry R. Berger
  • Patent number: 5417776
    Abstract: The surface layer of a hard austenitic stainless steel screw is formed as nitrided layer and then is covered by a plating coat or a resin coat to give properties such as shortening the boring time as well as heightening the surface hardness of the screw itself.
    Type: Grant
    Filed: August 4, 1994
    Date of Patent: May 23, 1995
    Assignee: Daidousanso Co., Ltd.
    Inventors: Akira Yoshino, Masaaki Tahara, Haruo Senbokuya, Kenzo Kitano, Teruo Minato
  • Patent number: 5415709
    Abstract: The present invention provides a high-strength, abrasion resistant aluminum alloy having a composition represented by the general formula Al.sub.a M.sub.b X.sub.c Z.sub.d Si.sub.e, wherein M is at least one element selected from the group consisting of Fe, Co, and Ni; X is at least one element selected from the group consisting of Y, La, Ce and Mm (mischmetal); Z is at least one element selected from the group consisting of Mn, Cr, V, Ti, Mo, Zr, W, Ta and Hf; and a, b, c, d and e are all expressed by atom percent and range from 50 to 89 %, 0.5 to 10 %, 0.5 to 10 %, 0 to 10 % and 10 to 49 %, respectively, with the proviso that a+b+c+d+e =100 %, the alloy containing fine Si precipitates and fine particles of intermetallic compounds dispersed in an aluminum matrix. The aluminum alloy may further contain not greater than 5 % of at least one element selected from the group consisting of Cu, Mg, Zn and Li. The alloy can be warm-worked at 300.degree.-500.degree. C.
    Type: Grant
    Filed: December 7, 1993
    Date of Patent: May 16, 1995
    Assignee: YKK Corporation
    Inventor: Kazuhiko Kita
  • Patent number: 5415704
    Abstract: This invention provides surface hardened, abrasion resistant high strength, biocompatible metal medical implants, in particular, titanium alloy implants which do not include any elements which have been shown or suggested as having short term or long term potential adverse effect from a standpoint of biocompatibility. Further, the invention provides methods of strengthening and hardening the surfaces of other titanium, zirconium, and cobalt-based alloy implants with small concentrations of a metal solute such as zirconium, yttrium, tantalum, aluminum, silicon, chromium, or thorium via internal oxidation or nitridation. Alternatively, nitrogen, oxygen, or carbon can be diffused directly into the surface of the implants by interstitial hardening to further increase the surface abrasion resistance of these internally oxidized or internally nitridized implant metal or metal alloys.
    Type: Grant
    Filed: September 13, 1993
    Date of Patent: May 16, 1995
    Assignee: Smith & Nephew Richards Inc.
    Inventor: James A. Davidson
  • Patent number: 5413641
    Abstract: A method of nitriding a piece made of titanium alloy, in which a laser beam is directed onto the piece to obtain a small amount of surface melting in the impact zone of the laser, nitrogen under high pressure is blown immediately behind the impact zone of the laser beam so that the nitrogen penetrates into the impact zone once it has become semi-solid, and an inert gas is blown around the nitrogen so as to cover and overlap the laser impact zone. The apparatus of the invention includes a central tube for conveying the nitrogen and a circularly symmetrical duct around the axis of the central tube having inside and outside walls that are conical and that serve to convey the inert gas. The invention serves to obtain a hard surface layer having a thickness of 1 mm to 2 mm.
    Type: Grant
    Filed: October 8, 1993
    Date of Patent: May 9, 1995
    Assignee: GEC Alsthom Electromecanique SA
    Inventor: Andre Coulon
  • Patent number: 5413644
    Abstract: Disclosed is a practical magnesium based alloy containing 1 to 99 weight % beryllium and an improved method of semi-solid processing of magnesium alloys containing beryllium. The present method avoids agitation of molten alloys and the need for introducing shear forces by utilizing atomized or ground particles of beryllium mixed with solid, particulate or liquidus magnesium.
    Type: Grant
    Filed: January 21, 1994
    Date of Patent: May 9, 1995
    Assignee: Brush Wellman Inc.
    Inventors: James M. Marder, Warren J. Haws
  • Patent number: 5411611
    Abstract: A method for forming a wrought product from a starting metal such as tantalum, niobium, and alloys thereof. A consumable electrode is coated with at least a first alloy layer by means which provide for uniform thickness. Sufficient power is applied to the electrode body to induce arcing to cause the starting metal and alloy layers to melt and pool in a crucible. The uniform layer on the electrode body provides a means for delivering minute quantities of alloy into a larger quantity of starting metal and facilitates a uniform and consistent arc which promotes mixing of the alloy and starting material in the crucible. The electrode body is consumed at an improved rate without an associated decrease in the final ingot yield weight. The pooled metal is allowed to solidify into an ingot. The ingot is then formed into a wrought product.
    Type: Grant
    Filed: August 5, 1993
    Date of Patent: May 2, 1995
    Assignee: Cabot Corporation
    Inventors: Prabhat Kumar, Louis Huber, Robert Engleman, Charles Heatley
  • Patent number: 5411614
    Abstract: A method of making a titanium base alloy comprising the steps of heating a titanium base alloy to a temperature ranging from .beta.-transus minus 250.degree. C. to .beta.-transus; and hot working the heated alloy with a reduction ratio of at least 50%. The titanium base alloy consists essentially of about 3.42 to 5 wt. % Al, 2.1 to 3.7 wt. % V, 0.85 to 2.37 wt. % Mo, at least 0.01 wt. % O, at least one element selected from the group consisting of Fe, Co, Cr, and the balance being titanium. The invention also includes superplastic forming of said alloys. The titanium alloy satisfies the following equations:0.85 wt. %.ltoreq.X wt. %.ltoreq.3.15 wt. %,7 wt. %.ltoreq.Y wt. %.ltoreq.13 wt. %,X wt. %=Fe wt. %+Co wt. %+0.9 Cr wt. %Y wt. %=2.times.Fe wt. %+2.times.Co wt. %+1.8.times.Cr wt. %+1.5.times.V wt. %+Mo wt. %.
    Type: Grant
    Filed: August 18, 1994
    Date of Patent: May 2, 1995
    Assignee: NKK Corporation
    Inventors: Atsushi Ogawa, Kuninori Minakawa, Kazuhide Takahashi
  • Patent number: 5409663
    Abstract: An indium-free, gold-colored, tarnish and corrosion-resistant alloy having no greater than 10% by weight gold and a color value, as measured according to the Cielab Color Measurement System, of approximately L=87.4, a=1.1, b=15.3. The alloy comprises 28-35% copper, 19.5-22.5% silver, 6-11% palladium, 22-32% zinc, 0.1-1% aluminum, and 0.5-3% platinum.
    Type: Grant
    Filed: May 3, 1994
    Date of Patent: April 25, 1995
    Inventors: Arthur D. Taylor, Norman J. LaMontagne, Jr., Malcolm Warren