Patents Examined by Uyen-Chau N. Le
  • Patent number: 9759878
    Abstract: An optical module includes: a circuit board having a surface in which an electronic element is mounted; an optical waveguide array in which a plurality of optical waveguides are formed; an optical element in which an optical signal that is transmitted and received from and to the optical waveguide is input and that is mounted at a side surface of the circuit board; and a connection member that connects the optical element and the electronic element, wherein a connection portion of a side surface of the circuit board in which the connection member is received has a curved shape.
    Type: Grant
    Filed: August 25, 2015
    Date of Patent: September 12, 2017
    Assignee: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventor: Jong Jin Lee
  • Patent number: 9749039
    Abstract: A portable device is brought into a data center for testing connectivity between a customer and a service provider. A user of the device uses the device to requests ticket and customer information from a service provider in order to obtain more information about a particular task. The user plugs a cable into the device and performs a series of diagnostic tests on the connection. The device is configured to display the results of the diagnostic tests and any associated errors. The user of the device performs one or more actions based on the results of the diagnostic tests.
    Type: Grant
    Filed: June 10, 2013
    Date of Patent: August 29, 2017
    Assignee: Amazon Technologies, Inc.
    Inventors: Po-Chun Chen, David Brian Lennon, Patrick Brigham Cullen, Daniel Thomas Robinson, Jawash Mohamed, Alexander Justin Penney, Kevin Christopher Miller, Marwan Salah Oweis
  • Patent number: 9739965
    Abstract: Provided is an optical fiber ribbon capable of concurrently ensuring mid-span access performance and cable production performance. The optical fiber ribbon 1 includes three or more optical fibers 2 arranged in parallel and connecting portions 3 connecting the adjacent optical fibers 2, the connecting portions 3 being formed intermittently in each of a ribbon longitudinal direction X and a ribbon width direction Y. The optical fiber ribbon 1 including the connecting portions 3 having split strength which is set in the range from 1.50 gf to 21.0 gf, contributes to exhibiting both the mid-span access performance and the cable production performance.
    Type: Grant
    Filed: August 28, 2014
    Date of Patent: August 22, 2017
    Assignees: FUJIKURA LTD., NIPPON TELEGRAPH AND TELEPHONE CORPORATION
    Inventors: Mizuki Isaji, Yoshie Sajima, Ken Osato, Naoki Okada, Takashi Matsuzawa, Yukiko Take, Yusuke Yamada, Shinya Hamaguchi, Daisuke Kakuta, Hisaaki Nakane
  • Patent number: 9739948
    Abstract: The ferrule has a rear end and a front end, an opening that is formed in the rear end and communicates with fiber holding holes holding the optical fibers formed from the rear end toward the front end, and first connection parts which are formed at the front end and to which the lens array is connected. The lens array has a rear face and a surface including an outgoing plane, lenses receiving the light from the optical fibers, and second connection parts connected to the first connection parts, the lenses and the second connection parts being formed on the rear face, and a flat face from which the light from the optical fibers is emitted, and third connection parts connected to an opposite connector, the flat face and the second connection parts being formed on the surface.
    Type: Grant
    Filed: December 28, 2015
    Date of Patent: August 22, 2017
    Assignee: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Takuro Watanabe, Masaki Ohmura
  • Patent number: 9733439
    Abstract: This optical receptacle comprises the following: an optical-receptacle body that is formed via injection molding; a first optical surface; a second optical surface on a first side; a first concavity that has an angled surface whereby light that has entered via the first optical surface is reflected towards the second optical surface; a gate section on a third side; a first through-hole and a second through-hole that extend in the direction of the axis of light traveling between the second optical surface and a light-transporting body; and a second concavity located between the first concavity and the third side. The part of the second concavity closest to a second side is closer to the abovementioned first side than the part of the gate section closest to the first side is. The first through-hole also opens to a first-side surface and a second-side surface of the second concavity.
    Type: Grant
    Filed: February 26, 2015
    Date of Patent: August 15, 2017
    Assignee: Enplas Corporation
    Inventor: Kazutaka Shibuya
  • Patent number: 9733543
    Abstract: Electro-optical modulators and methods of fabrication are disclosed. An electro-optical modulator includes a Mach-Zehnder interferometer formed in a substrate removed semiconductor layer and a coplanar waveguide. Signals from the coplanar waveguide are capacitively coupled to the Mach-Zehnder interferometer through first and second dielectric layers.
    Type: Grant
    Filed: October 5, 2016
    Date of Patent: August 15, 2017
    Assignee: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventor: Nadir Dagli
  • Patent number: 9715157
    Abstract: A voltage controlled optical directional coupler (VCODC) having a coupling ratio that can be adjusted to any desired value through voltage tuning is disclosed. The VCODC may include a first optical hybrid coupler and a second optical hybrid coupler, which may be coupled with each other via one or more voltage controlled optical elements having a variable transparency depending on a voltage applied to the one or more voltage controlled optical elements. The VCODC may be configured to divert a portion of optical power received to a trunk input of the VCODC to a tap output of the VCODC based on the variable coupling ratio of the VCODC, which may be dependent on the variable transparency of the one or more voltage controlled optical elements.
    Type: Grant
    Filed: December 8, 2015
    Date of Patent: July 25, 2017
    Assignee: Corning Optical Communications Wireless Ltd
    Inventor: Rami Reuven
  • Patent number: 9709766
    Abstract: A two layer splitter tray (18) has a cover (32) which mounts to a base (34). The base (34) and the cover (32) define openings for one or more splitters (88). The base (34) and cover (32) include cable management devices (42, 64) for managing the cable and fiber inputs and outputs, and the splices. Further splice trays (16) can be used with the splitter tray (18) for splicing to the splitter outputs. Other trays (100, 200) include a partial cover (140, 240) and openings for optical components and for adhesive attachment of parts.
    Type: Grant
    Filed: July 4, 2013
    Date of Patent: July 18, 2017
    Assignees: CommScope Connectivity Belgium BVBA, ADC CZECH REPUBLIC S.R.O., CommScope Technologies LLC
    Inventors: Bart Mattie Claessens, Dirk Kempeneers, Wouter Foulon, Eric Lydia Paul Peeters, Koen Huybrechts, Stepan Sejbal, Thomas Lehnert
  • Patent number: 9696567
    Abstract: An optical modulator comprises a silicon substrate, a buried oxide (BOX) layer disposed on top of the silicon substrate, and a ridge waveguide disposed on top of the BOX layer and comprising a first n-type silicon (n-Si) slab, a first gate oxide layer coupled to the first n-Si slab, a first p-type silicon (p-Si) slab coupled to the first gate oxide layer, and a light propagation path that travels sequentially through the first n-Si slab, the first gate oxide layer, and the first p-Si slab.
    Type: Grant
    Filed: January 26, 2015
    Date of Patent: July 4, 2017
    Assignee: Futurewei Technologies, Inc.
    Inventors: Dawei Zheng, Hongbing Lei, Qianfan Xu, Xiao Shen, Yusheng Bai
  • Patent number: 9678370
    Abstract: A carrier-depletion based silicon waveguide resonant cavity modulator includes a silicon waveguide based resonant cavity. The resonant cavity includes an optical modulation section and an optical power monitoring section. The optical power monitoring section includes an integrated lateral PIN diode including a doping compensated I region having a high defect density and a low net free carrier concentration. The doping compensated I region may be formed by performing a P-type implantation step and an N-type implantation step with overlapping ion implantation windows.
    Type: Grant
    Filed: July 23, 2014
    Date of Patent: June 13, 2017
    Assignees: IMEC VZW, Universiteit Gent
    Inventors: Yu Hui, Wim Bogaerts
  • Patent number: 9664869
    Abstract: In various embodiments, an optical fiber module including an optical fiber having a first end, a second end, and a twisted portion between the first and second ends to enable the optical fiber to provide two orthogonal transverse bending degrees of freedom. The twisted portion induces an optical distortion. The module further includes a distortion compensation arrangement that is configured to at least partially compensate for the optical distortion and a housing that is configured to house at least a portion of the optical fiber including the twisted portion.
    Type: Grant
    Filed: December 1, 2011
    Date of Patent: May 30, 2017
    Assignee: RAYTHEON COMPANY
    Inventors: Ray E. McVey, David A. Rockwell
  • Patent number: 9664870
    Abstract: An optical fiber cable management panel is provided with slidable drawers and structure within the drawers for cable management and/or connection to other devices. Tray inserts drop into the drawers to provide the appropriate management and connection devices. A movable take-up mechanism manages the cable entering and exiting the drawers at side openings. Stackable pivoting storage trays on the tray insert include a detent arrangement for holding each tray in a pivoted access position. The tray inserts further include a front key, and a back tab mounting arrangement for mounting the tray inserts to the drawers, and side radius limiters including notches for extending over raised portions of the drawer. The take-up mechanism includes a U-shaped trough section and cable retention tabs. A control mechanism is provided for controlling movement of the take-up mechanism relative to the drawer.
    Type: Grant
    Filed: January 10, 2014
    Date of Patent: May 30, 2017
    Assignee: CommScope Technologies LLC
    Inventors: Steven P. Trebesch, Thomas C. Tinucci, Joel B. Douglas, John C. Holman, Trevor D. Smith, Paul C. Lance
  • Patent number: 9638955
    Abstract: A liquid crystal display device according to the present invention includes a rear light source device, a rear polarizing plate, a liquid crystal cell including liquid crystal molecules that are substantially perpendicularly aligned during black display, and a front polarizing plate, which are provided in the stated order, wherein: an absorption axis of a polarizer of the rear polarizing plate is perpendicular to an absorption axis of a polarizer of the front polarizing plate; and condensed light in which a half-value angle in a direction perpendicular to the absorption axis of the polarizer of the rear polarizing plate is smaller than a half-value angle in a direction parallel to the absorption axis of the polarizer of the rear polarizing plate enters the rear polarizing plate.
    Type: Grant
    Filed: April 5, 2010
    Date of Patent: May 2, 2017
    Assignee: NITTO DENKO CORPORATION
    Inventors: Hiroyuki Takemoto, Minoru Miyatake
  • Patent number: 9599843
    Abstract: An aspect of the present invention is an optical modulator including an electro-optic substrate, an optical waveguide, and a signal electrode for applying an electric field corresponding to a modulation signal to the optical waveguide. The electro-optic substrate includes a trench portion, which is formed by digging a surface of the electro-optic substrate, and a ridge portion, which is formed in a ridge shape by the trench portion so that an optical waveguide is provided. The trench portion includes a first trench portion, which is a trench portion between a pair of branched optical waveguides, and a second trench portion, which is a trench portion other than the first trench portion. Digging depths of the first and second trench portions are different.
    Type: Grant
    Filed: February 7, 2014
    Date of Patent: March 21, 2017
    Assignee: Sumitomo Osaka Cement Co., Ltd.
    Inventors: Katsutoshi Kondou, Junichiro Ichikawa
  • Patent number: 9599767
    Abstract: A light emitting assembly, a backlight module having the light emitting assembly, and a liquid crystal display (LCD) apparatus having the backlight module are provided. The light emitting assembly includes a rigid circuit board, a plurality of light emitting diode (LED) devices, and a flexible circuit board. The rigid circuit board has a plurality of external circuits isolated from one another. The LED devices are disposed on the rigid circuit board, and each of the external circuits is connected to a corresponding one of the LED devices. The flexible circuit board has a plurality of connecting lines, and each of the connecting lines is connected to at least two of the external circuits, so as to serially connect the LED devices that are connected to the external circuits.
    Type: Grant
    Filed: October 29, 2015
    Date of Patent: March 21, 2017
    Assignee: Au Optronics Corporation
    Inventors: Ching-Feng Chen, Cheng-Min Tsai, Hua-Chen Fan
  • Patent number: 9575269
    Abstract: Described are embodiments of apparatuses and systems of an active optical cable assembly including a connector plug configured to resist stress to optical fibers of the cable assembly. The connector plug may include a light engine mounted on a substrate, a jumper mounted on the substrate and configured to convey optical signals between an optical fiber and the light engine, and a fiber holder assembly configured to constrain motion of the optical fiber, the fiber holder assembly including a fiber holder on a first side of the substrate and a fiber holder cover on a second side of the substrate such that the optical fiber is fixedly held between the fiber holder and the fiber holder cover. Other embodiments may be described and/or claimed.
    Type: Grant
    Filed: March 18, 2013
    Date of Patent: February 21, 2017
    Assignee: Intel Corporation
    Inventors: Chun Chit Lam, Jamyuen Ko
  • Patent number: 9563016
    Abstract: A method for reducing loss in a subwavelength photonic crystal waveguide bend is disclosed. The method comprising: forming the subwavelength photonic crystal waveguide bend with a series of trapezoidal shaped dielectric pillars centered about a bend radius; wherein each of the trapezoidal shaped dielectric pillars comprise a top width, a bottom width, and a trapezoid height; wherein the length of the bottom width is greater than the length of the top width; and wherein the bottom width is closer to the center of the bend radius of the subwavelength photonic crystal waveguide bend than the top width. Other embodiments are described and claimed.
    Type: Grant
    Filed: November 24, 2015
    Date of Patent: February 7, 2017
    Assignee: Omega Optics, Inc.
    Inventors: Xiaochuan Xu, Ray T. Chen
  • Patent number: 9557482
    Abstract: A high-order polarization conversion device configured of a planar optical waveguide, includes: a substrate; a lower clad disposed on the substrate; a core including a lower core and an upper core, the lower core being disposed on the lower clad and having a fixed height in a rectangular sectional shape, the upper core being formed of the same material as the lower core and having a fixed height in a rectangular sectional shape that is disposed continuously on the lower core; and an upper clad that is disposed on the core and the lower clad and is formed of the same material as the lower clad. The high-order polarization conversion device performs high-order polarization conversion between TE1 of the start portion and TM0 of the end portion.
    Type: Grant
    Filed: December 21, 2015
    Date of Patent: January 31, 2017
    Assignee: FUJIKURA LTD.
    Inventors: Akira Oka, Kazuhiro Goi, Kensuke Ogawa, Hiroyuki Kusaka
  • Patent number: 9547229
    Abstract: The disclosed embodiments provide systems and methods for mitigating lensing and scattering as an optical fiber is being inscribed with a grating. The disclosed systems and methods mitigate the lensing phenomenon by surrounding an optical fiber with an index-matching material that is held in a vessel with a sealed phase mask. The sealed phase mask allows it to be in contact with a liquid index-matching material without having the liquid index-matching material seep into the grooves of the sealed phase mask. Thus, for some embodiments, the sealed phase mask may be immersed in a liquid index-matching material without adversely affecting the function of the phase mask.
    Type: Grant
    Filed: February 20, 2014
    Date of Patent: January 17, 2017
    Assignee: OFS FITEL, LLC
    Inventors: Kenneth S Feder, Paul S Westbrook
  • Patent number: 9535308
    Abstract: A photonic integrated circuit (PIC) is described. This PIC includes a semiconductor-barrier layer-semiconductor diode in an optical waveguide that conveys an optical signal, where the barrier layer is an oxide or a high-k material. Moreover, semiconductor layers in the semiconductor-barrier layer-semiconductor diode may include geometric features (such as a periodic pattern of holes or trenches) that create a lattice-shifted photonic crystal optical waveguide having a group velocity of light that is lower than the group velocity of light in the first semiconductor layer and the second semiconductor layer without the geometric features. The optical waveguide is included in an optical modulator, such as a Mach-Zehnder interferometer (MZI).
    Type: Grant
    Filed: September 25, 2013
    Date of Patent: January 3, 2017
    Assignee: ORACLE INTERNATIONAL CORPORATION
    Inventors: Guoliang Li, Ashok V. Krishnamoorthy, Xuezhe Zheng, Ying L. Luo, John E. Cunningham