Patents Examined by Virginia Manoharan
  • Patent number: 8696873
    Abstract: The present invention relates to a method for purification of bilge and sludge water on a ship, especially at sea, using excess heat from the ship's engine(s) to a level of oil contamination of less than 15 ppm. The invention also relates to a plant for carrying out the method, and a vessel including such plant, as well as the use of the method and plant.
    Type: Grant
    Filed: January 25, 2012
    Date of Patent: April 15, 2014
    Assignee: PPM-Clean AB
    Inventors: Benny Karlström, Jan Hedkvist
  • Patent number: 8691056
    Abstract: A system and method for separating a fluid mixture is provided which employ vacuum distillation apparatus, and optionally, gas-handling apparatus operable to introduce a gas into the liquid mixture prior to being dispersed within the vacuum distillation apparatus. The liquid mixture is dispersed within the vacuum distillation apparatus as micro-sized droplets. When used, the gas that has been introduced into the liquid mixture is rapidly liberated from the micro-sized droplets thereby causing the droplets to break into still smaller droplets thereby maximizing the vaporization of the more volatile components in the liquid mixture.
    Type: Grant
    Filed: April 12, 2010
    Date of Patent: April 8, 2014
    Assignee: Distillation Technologies, Inc.
    Inventors: Sam J. Burton, Dick Burton
  • Patent number: 8691055
    Abstract: The present disclosure relates to processes and systems for purifying technical grade trichlorosilane and/or technical grade silicon tetrachloride into electronic grade trichlorosilane and/or electronic grade silicon tetrachloride.
    Type: Grant
    Filed: September 7, 2012
    Date of Patent: April 8, 2014
    Assignee: MEMC Electronic Materials SpA
    Inventor: Gianfranco Ghetti
  • Patent number: 8691054
    Abstract: The present invention provides a configuration of a multi stage flash cross tube evaporator wherein flash stages are arranged in a plurality of at least two tiers with a first flash stage to which a heated solution is fed, a plurality of intermediate flash stages and a last flash stage from which the concentrated solution is discharged in each tier, wherein the flash stages in each tier are in a serial flow communication and the flash stages of each tier are in parallel flow communication to the flash stages in the other tier(s). Such configuration allows to minimize the size of the tube bundles, flash stages and evaporator shell and consequently minimizing evaporator weight and cost.
    Type: Grant
    Filed: April 18, 2011
    Date of Patent: April 8, 2014
    Inventor: Friedrich Alt
  • Patent number: 8663461
    Abstract: Solvent regeneration to recover a polar hydrocarbon (HC) selective solvent substantially free of hydrocarbons (HCs) and other impurities from a solvent-rich stream containing selective solvent, heavy HCs, and polymeric materials (PMs) generated from reactions among thermally decomposed or oxidized solvent, heavy HCs, and additives is provided. A combination of displacement agent and associated co-displacement agent squeezes out the heavy HCs and PMs from the extractive solvent within a solvent clean-up zone. Simultaneously, a filter equipped with a magnetic field is positioned in a lean solvent circulation line to remove paramagnetic contaminants. The presence of the co-displacement agent significantly enhances the capability of the displacement agent in removing the heavy HCs and PMs from the extractive solvent.
    Type: Grant
    Filed: March 3, 2013
    Date of Patent: March 4, 2014
    Assignees: AMT International, Inc., CPC Corporation, Taiwan
    Inventors: Fu-Ming Lee, Tzong-Bin Lin, Kuang-Yeu Wu, Jyh-Haur Hwang, Tsung-Min Chiu, Jeng-Cheng Lee, Han-Tjen Jan, Yuan-Fu Sun
  • Patent number: 8658846
    Abstract: Disclosed herein are processes for separation of 2,3,3,3-tetrafluoropropene and hydrogen fluoride using azeotropic distillation. Additionally, disclosed are processes for separating mixtures of 2,3,3,3-tetrafluoropropene, hydrogen fluoride and 1,1,1,2,3-pentafluoropropane (HFC-245eb) and/or 1,1,1,2,2-pentafluoropropane (HFC-245cb) by azeotropic distillation.
    Type: Grant
    Filed: February 19, 2009
    Date of Patent: February 25, 2014
    Assignee: E I du Pont de Nemours and Company
    Inventor: Jeffrey P. Knapp
  • Patent number: 8652303
    Abstract: A desalination device includes a vessel, a breathable sheet, a water-repellent particle layer and a tank layer. The tank layer is positioned at the lower portion inside the vessel and the breathable sheet is interposed between the water-repellent particle layer and the tank layer. The breathable sheet includes a through-hole, the water-repellent particle layer is composed of a plurality of water-repellent particles, and the surface of the respective water-repellent particles includes a water-repellent film. The saltwater is desalted by a step of pouring saltwater into the vessel to dispose the saltwater on the surface of the water-repellent particle layer, a step of heating the saltwater to evaporate the saltwater into vapor; and a step of liquefying the vapor to obtain fresh water in the tank layer.
    Type: Grant
    Filed: February 13, 2012
    Date of Patent: February 18, 2014
    Assignee: Panasonic Corporation
    Inventors: Norihisa Mino, Daisuke Ueda
  • Patent number: 8652304
    Abstract: The present invention is directed to an enhanced process for separating dissolved and suspended solids from valuable or harmful liquids and more particularly to improving the operational aspects and separation efficiency of treating certain water miscible fluids including those used for oil and gas processing such as glycols, as well as automobile and aircraft fluids, that have become contaminated with dissolved and/or suspended solid matter.
    Type: Grant
    Filed: June 15, 2009
    Date of Patent: February 18, 2014
    Assignees: Prime Services Trustee Limited, VBW Trustees No. 2 Limited
    Inventor: Craig Nazzer
  • Patent number: 8628644
    Abstract: The present invention relates to a process for separating close-boiling and azeotropic components of mixtures, wherein said mixtures contain at least one hydrofluorocarbon compound, using at least one ionic liquid.
    Type: Grant
    Filed: September 22, 2006
    Date of Patent: January 14, 2014
    Assignee: E I du Pont Nemours and Company
    Inventors: Mark B. Shiflett, Akimichi Yokozeki
  • Patent number: 8628643
    Abstract: A fermentation liquid feed including water and a product alcohol and optionally CO2 is at least partially vaporized such that a vapor stream is produced. The vapor stream is contacted with an absorption liquid under suitable conditions wherein an amount of the product alcohol is absorbed. The portion of the vapor stream that is absorbed can include an amount of each of the water, the product alcohol and optionally the CO2. The temperature at the onset of the absorption of the vapor stream into the absorption liquid can be greater than the temperature at the onset of condensation of the vapor stream in the absence of the absorption liquid. The product alcohol can be separated from the absorption liquid whereby the absorption liquid is regenerated. The absorption liquid can include a water soluble organic molecule such as an amine.
    Type: Grant
    Filed: August 10, 2011
    Date of Patent: January 14, 2014
    Assignee: Butamax Advanced Biofuels LLC
    Inventors: Michael Charles Grady, William D. Parten, Robert W. Sylvester, Joseph J. Zaher
  • Patent number: 8623179
    Abstract: A seawater desalinization device includes a container portion, a guiding pipe, a plug, a heat conduction cover, a switch, and a connecting pipe. The container portion defines a receiving chamber, a slot, and a through hole communicating with the receiving chamber. The guiding pipe is fixed on the container portion to communicating with the slot. The plug is detachably inserted into the guiding pipe. The heat conduction cover covers on the container portion and sealing the receiving chamber and the slot. The switch is assembled in the container portion to control open or close the through hole upon a seawater level in the container portion. The connecting pipe is inserted into the through hole and a seawater source.
    Type: Grant
    Filed: December 30, 2010
    Date of Patent: January 7, 2014
    Assignees: Shenzhen Futaihong Precision Industry Co., Ltd., FIH (Hong Kong) Limited
    Inventors: Zheng Shi, Jiang-Feng Liu
  • Patent number: 8623181
    Abstract: A seawater desalinization device includes a container portion and a heat conduction cover covering on the container portion. The container portion defines a receiving chamber and a slot. The receiving chamber is configured for receiving seawater, and the slot is defined around the receiving chamber for receiving fresh water evaporated from the seawater. The heat conduction cover defines a plurality of guiding slots facing the container portion for guiding the fresh water drop into the slot.
    Type: Grant
    Filed: December 30, 2010
    Date of Patent: January 7, 2014
    Assignees: Shenzhen Futaihong Precision Industry Co., Ltd., FIH (Hong Kong) Limited
    Inventors: Zheng Shi, Jiang-Feng Liu
  • Patent number: 8623180
    Abstract: A seawater desalinization system includes a container portion, a heat conduction cover, and a heating device. The container portion defines a receiving chamber and a slot. The heat conduction cover covers on the container portion and seals the receiving chamber and the slot. The container portion is heated by the heating device. The heating device can absorb solar energy to heat the seawater under the dark condition. Therefore, the seawater desalinization system can heat the seawater to obtain fresh water continually.
    Type: Grant
    Filed: December 30, 2010
    Date of Patent: January 7, 2014
    Assignees: Shenzhen Futaihong Precision Industry Co., Ltd., FIH (Hong Kong) Limited
    Inventors: Zheng Shi, Jiang-Feng Liu
  • Patent number: 8617359
    Abstract: A method for distilling a starting material that includes a liquid Fd to be distilled, uses a gas-tight container system that is resistant to excess and/or negative pressure. The container system includes a condenser for condensing the liquid Fd, which has turned to vapor and whose temperature can be adjusted, to give the condensation product, and a vapor chamber connecting the evaporator and the condenser. The pressure and temperature in the vapor chamber are monitored and controlled so that distillation is always carried out in a range close to the saturation vapor pressure of the liquid Fd to be distilled. If the pressure is too high, it is reduced so that especially foreign gas is removed. An installation includes a container for distillation according to method.
    Type: Grant
    Filed: April 1, 2008
    Date of Patent: December 31, 2013
    Inventors: Markus Lehmann, Markus Braendli
  • Patent number: 8618334
    Abstract: Methods for continuously preparing cyclohexanone from phenol make use of a catalyst having at least one catalytically active metal selected from platinum and palladium. The process includes enriching phenol in a distillation fraction as compared to a subsequent fraction, wherein the subsequent fraction includes phenol and side-products having a higher boiling point than phenol. Distillation is carried out in a vacuum distillation column equipped with trays in the lower part of the column. In an upper part of the column, i.e., in the part above the feed inlet, packing material is present instead of trays in at least part thereof. The packing material has a comparable or improved separating efficiency, and provides a reduction of the pressure drop by at least 30%, preferably more than 50%, as compared to the case with trays in the upper part, under otherwise similar distillation conditions.
    Type: Grant
    Filed: December 16, 2008
    Date of Patent: December 31, 2013
    Assignee: DSM IP Assets B.V.
    Inventors: Marleen Horsels, Rudy Francols Marla Jozef Parton, Johan Thomas Tinge
  • Patent number: 8613840
    Abstract: The solar-powered distillation system is particularly adapted for small scale seawater distillation to produce fresh water. The system includes a single heat-absorbent evaporation panel having mutually opposed evaporation surfaces, the panel being contained within a single housing. Each side of the housing includes a lens panel. The lenses of each panel focus solar energy onto the respective surfaces of the evaporation panel. A mirror is positioned to each side of the housing to reflect solar energy onto the respective lens panels. Contaminated water enters the top of the housing to run down the surfaces of the evaporation panel. A fresh water collection pipe extends from the top of the housing to a collection tank. A scraper mechanism removes salt and/or other residue from the surfaces of the evaporation panel to allow the residue to be removed periodically from the bottom of the housing.
    Type: Grant
    Filed: November 27, 2012
    Date of Patent: December 24, 2013
    Inventor: Salem Ibrahem Abdullatef Alayoub
  • Patent number: 8609909
    Abstract: Processes for the preparation and purification of hydrofluoroolefins such as tetrafluorinated propenes. A process is provided for separating a first hydrofluoroolefin from a second hydrofluoroolefin by a) providing a mixture including a first hydrofluoroolefin and a second hydrofluoroolefin, which first hydrofluoroolefin is preferentially more reactive with an amine than the second hydrofluoroolefin; b) adding a sufficient amount of an amine to the mixture to form a combination including the second hydrofluoroolefin and a reaction product of the first hydrofluoroolefin and the amine; and then c) separating the reaction product from the combination. This is particularly useful for removing 1,2,3,3,3-pentafluoropropene (HFO-1225ye) impurities from the hydrofluoroolefin 2,3,3,3-tetrafluoropropene (HFO-1234yf). HFO-1234yf is a refrigerant with low global warming potential.
    Type: Grant
    Filed: January 29, 2010
    Date of Patent: December 17, 2013
    Assignee: Honeywell International Inc.
    Inventors: Ryan Hulse, Rajiv Ratna Singh, Ian Shankland, Michael Van Der Puy
  • Patent number: 8609922
    Abstract: An aromatics complex producing one or more xylene isomers offers a large number of opportunities to conserve energy by heat exchange within the complex. One previously unrecognized opportunity is through providing two parallel distillation columns operating at different pressures to separate C8 aromatics from C9+ aromatics. The parallel columns offer additional opportunities to conserve energy within the complex through heat exchange in associated xylene recovery facilities.
    Type: Grant
    Filed: August 25, 2010
    Date of Patent: December 17, 2013
    Assignee: UOP LLC
    Inventors: Gregory R. Werba, Xin X. Zhu, Phillip F. Daly, Saadet Ulas Acikgoz, Jason T. Corradi, David W. Ablin
  • Patent number: 8592609
    Abstract: Processes for producing lactide from lactic acid oligomers are described herein. The processes generally include heating a lactic acid oligomer in the presence of a catalyst at a temperature of between 150° C. and 300° C. under a pressure of less than 0.01 MPa to form a lactide; distilling the lactide; and condensing and recovering the lactide, wherein the catalyst is a metal salt of the phosphite anion PO33? in which the metal is selected from the group consisting of tin, aluminum, zinc, titanium and zirconium.
    Type: Grant
    Filed: December 19, 2008
    Date of Patent: November 26, 2013
    Assignee: Futerro S.A.
    Inventors: Philippe Coszach, Pierre-Antoine Mariage
  • Patent number: 8591705
    Abstract: A multi-effect evaporator, having an upstream and a downstream end, adapted for distillation of water. It includes a plurality of effects connected in a series manner and arranged into groups. Each group has a common parallel water feed inlet adapted to supply all effects in the group with feed water. The evaporator further includes a main feed water line in fluid communication with the most upstream group. An array of heaters is disposed along the line, adapted for heating the feed water before its entry into the effects of the latter group. Each effect includes means for forwarding the second outlet vapor into one of the heaters for heating the feed water. Each group includes a pump adapted to extract the concentrate from the effects of the group and pump it into the common parallel water feed of an adjacent downstream group.
    Type: Grant
    Filed: March 3, 2011
    Date of Patent: November 26, 2013
    Assignee: I.D.E. Technologies Ltd.
    Inventors: Joseph Weinberg, Avraham Ophir